【数B】数列:2020年駿台,高2,第2回全国模試 第6問(数列)の解説 - 質問解決D.B.(データベース)

【数B】数列:2020年駿台,高2,第2回全国模試 第6問(数列)の解説

問題文全文(内容文):
2020年駿台,高2,第2回全国模試 第6問
数列{$a_n$},{$b_n$},{$c_n$}を次のように定める。$a_1=1, a_{n+1}=2a_n+1, b_1=1, b_{n+1}=2b_n+a_n, c_1=1, c_{n+1}=3c_n+b_n (n=1,2,3,...)$。次の問いに答えよう。
(1){$a_n$}の一般項を求めよう。
(2)$d_n=\dfrac{b_n}{2^(n-1)}$とおくとき、
 (i)$d_{n+1}$を$d_n$を用いて表そう。 (ii){$d_n$}の一般項を求めよう。
(3){$c_n$}の一般項を求めよう。
チャプター:

0:00 オープニング
0:05 問題文
0:20 問題解説(1):特性方程式(特殊解)型の漸化式
1:57 問題解説(2-i):誘導に従って式変形
3:04 問題解説(2-ii):階差型の漸化式
6:15 問題解説(3):等比型への変形方法
10:22 名言

単元: #大学入試過去問(数学)#数列#漸化式#数学(高校生)#駿台模試
指導講師: 理数個別チャンネル
問題文全文(内容文):
2020年駿台,高2,第2回全国模試 第6問
数列{$a_n$},{$b_n$},{$c_n$}を次のように定める。$a_1=1, a_{n+1}=2a_n+1, b_1=1, b_{n+1}=2b_n+a_n, c_1=1, c_{n+1}=3c_n+b_n (n=1,2,3,...)$。次の問いに答えよう。
(1){$a_n$}の一般項を求めよう。
(2)$d_n=\dfrac{b_n}{2^(n-1)}$とおくとき、
 (i)$d_{n+1}$を$d_n$を用いて表そう。 (ii){$d_n$}の一般項を求めよう。
(3){$c_n$}の一般項を求めよう。
投稿日:2021.01.17

<関連動画>

福田の数学〜明治大学2021年全学部統一入試IⅡAB第1問(1)〜連立型の漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)数列$\left\{a_n\right\},\ \left\{b_n\right\}$について次の条件が与えられている。
$\left\{
\begin{array}{1}
a_{n+1}=7a_n-10b_n\\
b_{n+1}=2a_n-2b_n 
\end{array}
\right.   (n=1,2,3,\ldots)$
ただし、$a_1=11,\ b_1=4$とする。このとき、
$\left\{
\begin{array}{1}
c_n=a_n-2b_n   \\
d_n=2a_n-5b_n  
\end{array}
\right.   (n=1,2,3,\ldots)$
とおくと、$c_n=\boxed{\ \ ア\ \ }^n, d_n=\boxed{\ \ イ\ \ }^n$であり、これより$\left\{a_n\right\},\ \left\{b_n\right\}$
の一般項は
$\left\{
\begin{array}{1}
a_n=\boxed{\ \ ウ\ \ }・\boxed{\ \ ア\ \ }^n-\boxed{\ \ エ\ \ }・\boxed{\ \ イ\ \ }^n\\
b_n=\boxed{\ \ オ\ \ }・\boxed{\ \ ア\ \ }^n-\boxed{\ \ イ\ \ }^n    \\
\end{array}
\right.$
である。

2021明治大学全統過去問
この動画を見る 

数学「大学入試良問集」【13−12 数列と二項定理】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#静岡大学#数学(高校生)#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)
$k$を2以上の自然数とする。
$x$の整式$(1+x)^k$において$x^2$の係数を求めよ。

(2)
$n$を2以上の自然数とする。
$x$の整式$\displaystyle \sum_{k=1}^n(1+x)^k$において$x^2$の係数を$a_n$とする。
  (ⅰ)$a_n$を求めよ。
  (ⅱ)$S_n=\displaystyle \frac{1}{a_2}+\displaystyle \frac{1}{a_3}+・・・+\displaystyle \frac{1}{a_n}$を求めよ。
この動画を見る 

福田の数学〜立教大学2021年経済学部第2問〜2項間の漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$次の条件によって定められる数列$\left\{a_n\right\}$がある。
$a_1=1, a_{n+1}=3a_n+4n (n=1,2,3,\ldots)$
また、$n$に無関係な定数$p,q$に対し、
$b_n=a_n+pn+q (n=1,2,3,\ldots)$
とおく。このとき次の問いに答えよ。
(1)$n,p,q$に無関係な定数$A,B,C,D,E$が
$b_{n+1}=Ab_n+(Bp+C)n+(Dp+Eq) (n=1,2,3,\ldots)$
を満たすとき、A,B,C,D,Eの値をそれぞれ求めよ。
(2)Aを(1)で求めた値とする。数列$\left\{b_n\right\}$が公比$A$の等比数列となるような
$p,q$の値をそれぞれ求めよ。
(3)(2)で求めた$p,q$の値に対して、数列$\left\{b_n\right\}$の一般項を求めよ。

2021立教大学経済学部過去問
この動画を見る 

【数B】数学的帰納法が意味不明な人へ【新しいイメージで考える】

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数B】数学的帰納法解説動画です
-----------------
$1^2+3^2+5^2+…+(2n-1)^2=$
$\displaystyle \frac{1}{2}n(2n-1)(2n+1)$を証明せよ
この動画を見る 

上智大 連立漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#漸化式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
上智大学過去問題
$a_1 =0,b_1=6$
$a_{n+1}=\frac{a_n+b_n}{2}$,$b_{n+1}=a_n$
点Pの$(a_n,b_n)$はある直線上にある。その式は?
$n \to \infty$のときの$P_n$
この動画を見る 
PAGE TOP