福田の数学〜早稲田大学2025人間科学部第3問〜外心と内心の位置ベクトル - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2025人間科学部第3問〜外心と内心の位置ベクトル

問題文全文(内容文):

$\boxed{3}$

(1)$\triangle ABC$において$AB=6,AC=4,$

$\cos A=\dfrac{1}{4}$とする。

$\triangle ABC$の外心を$H$とし、直線$AH$が

$\triangle ABC$の外接円と交わる点のうち、

点$A$とは異なる点を$P$とする。

このとき、$\overrightarrow{AP}=\dfrac{\boxed{ス}}{\boxed{セ}}\overrightarrow{AB}+\dfrac{\boxed{ソ}}{\boxed{タ}}\overrightarrow{AC}$である。

(2)$\triangle ABC$において$AB=5,AC=6,$

$\cos A=\dfrac{1}{5}$とする。

$\triangle ABC$の内心を$K$とし、

直線$AK$が$\triangle ABC$の内接円と

交わる点のうち、点$A$に近いほうの点を

$Q$とする。

このとき、$\overrightarrow{AQ}=\dfrac{\boxed{チ}-\sqrt{\boxed{ツ}}}{\boxed{テ}}\overrightarrow{AK}$である。

$2025$年早稲田大学人間科学部過去問題
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

(1)$\triangle ABC$において$AB=6,AC=4,$

$\cos A=\dfrac{1}{4}$とする。

$\triangle ABC$の外心を$H$とし、直線$AH$が

$\triangle ABC$の外接円と交わる点のうち、

点$A$とは異なる点を$P$とする。

このとき、$\overrightarrow{AP}=\dfrac{\boxed{ス}}{\boxed{セ}}\overrightarrow{AB}+\dfrac{\boxed{ソ}}{\boxed{タ}}\overrightarrow{AC}$である。

(2)$\triangle ABC$において$AB=5,AC=6,$

$\cos A=\dfrac{1}{5}$とする。

$\triangle ABC$の内心を$K$とし、

直線$AK$が$\triangle ABC$の内接円と

交わる点のうち、点$A$に近いほうの点を

$Q$とする。

このとき、$\overrightarrow{AQ}=\dfrac{\boxed{チ}-\sqrt{\boxed{ツ}}}{\boxed{テ}}\overrightarrow{AK}$である。

$2025$年早稲田大学人間科学部過去問題
投稿日:2025.07.07

<関連動画>

【数B】ベクトル:ベクトルの基本⑰2直線のなす鋭角を求める

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
2直線$\sqrt3 x+3y-1=0, -x+\sqrt3 y-2=0$のなす鋭角$\alpha$を求めよ
この動画を見る 

福田の数学〜東京理科大学2022年理工学部第2問〜位置ベクトルと面積比

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
平面上に三角形ABCと点Pがあり、点Pは、ある正の定数tに対して
$3t\overrightarrow{ AP }+t^2\overrightarrow{ BP }+4\overrightarrow{ CP }=\overrightarrow{ 0 }$
を満たすとする。
$\overrightarrow{ b } =\overrightarrow{ AB },\overrightarrow{ c } =\overrightarrow{ AC }$とおく。
(1)$\overrightarrow{ BP }$を、$\overrightarrow{ b }$と$\overrightarrow{ AP }$を用いて表せ。
(2)$\overrightarrow{ AP }=v\ \overrightarrow{ b }+w\ \overrightarrow{ c }$となる実数v,wを、tを用いて表せ。
(3)直線APと直線BCの交点をDとする。
$\overrightarrow{ AD }=x\ \overrightarrow{ b }+y\ \overrightarrow{ c }$となる実数x,yを、tを用いて表せ。
(4)$\frac{S_2}{S_1}$を、tを用いて表せ。
(5)tが正の実数全体を動くとき、$\frac{S_2}{S_1}$が最大となるtの値を求めよ。

2022東京理科大学理工学部過去問
この動画を見る 

【数B】ベクトル:正射影ベクトルの仕組みと使い方

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
正射影ベクトルについて解説します!
この動画を見る 

福田の数学〜大阪大学2025理系第3問〜空間図形と最大最小の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#微分法と積分法#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

座標空間に$3$点$O(0,0,0),A(0,1,1),B(x,y,0)$がある。

$\angle OAP=30°$かつ$y\geqq 0$を満たすように

点$P$が動くとき、

$(x+1)(y+1)$の最大値と最小値を求めよ。

$2025$年大阪大学理系過去問題
この動画を見る 

【数C】【平面上のベクトル】ベクトルの基本計算3 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
平行四辺形ABCDの辺$\overrightarrow{ AB }=\vec{ a }$,$\overrightarrow{ AD }=\vec{ b }$ , $\overrightarrow{ AE }=\vec{ u }$ ,$\overrightarrow{ AF }=\vec{ v }$ とするとき、$\vec{ a }$ ,$\vec{ b }$ を $\vec{ u }$ ,$\vec{ v }$ を用いて表せ。


BCの中点をE、辺CD上の点でCF:FD=3:2 を満たす点をFとする。
この動画を見る 
PAGE TOP