福田の数学〜立教大学2021年理学部第1問(2)〜3直線が1点で交わる条件 - 質問解決D.B.(データベース)

福田の数学〜立教大学2021年理学部第1問(2)〜3直線が1点で交わる条件

問題文全文(内容文):
${\Large\boxed{1}}$(2)$t$を実数とする。座標平面上の3つの直線
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+(2t-2)y-4t+2=0 \\
x+(2t+2)y-4t-2=0 \\
2tx+y-4t=0     
\end{array}
\right.
 (-2 \leqq t \leqq 1)
\end{eqnarray}$ 
が1つの点で交わるようなtの値を全て求めると$t=\boxed{イ}$である。

2021立教大学理学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)$t$を実数とする。座標平面上の3つの直線
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+(2t-2)y-4t+2=0 \\
x+(2t+2)y-4t-2=0 \\
2tx+y-4t=0     
\end{array}
\right.
 (-2 \leqq t \leqq 1)
\end{eqnarray}$ 
が1つの点で交わるようなtの値を全て求めると$t=\boxed{イ}$である。

2021立教大学理学部過去問
投稿日:2021.10.03

<関連動画>

【高校受験対策】数学-死守18

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#平方根#2次方程式#比例・反比例#確率#点と直線
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問いに答えなさい.

①$15 - 9\div 3$を計算しなさい.

②$\dfrac{2}{7}\times \dfrac{3}{4}$を計算しなさい .

③$-5-3+7$を計算しなさい.

④$(3x - 2y) + 5(x - 4y)$ を計算しなさい.

⑤$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=2 \\
x+2y=-6
\end{array}
\right.
\end{eqnarray}$
を解きなさい.

⑦$\sqrt{15}\times \sqrt6 +\sqrt{10}$を計算しなさい.

⑧$x^2-2x-63$を因数分解しなさい.

⑧方程式$ 2x ^ 2 + 9x + 8 = 0$ を解きなさい.

⑨右の図のように,平行な2直線$\ell,m$があり,直線上に2点$A,B$
直線$m$上に2点$C,D$がある.
$AB=BC, \angle BCD = 42°$のとき,$\angle BAC$の大きさを求めなさい.

⑩下の表は,$y$が$x$に反比例する関係を表したものです.
表のⒶにあてはまる数を求めなさい.

⑪数字を書いた3枚のカード$①,②,③$が袋$A$の中に,
数字を書いた5枚のカード$①,②,③,④,⑤$が袋$B$の中に入っています.
それぞれの袋からカードを1枚ずつ取り出すとき,
その2枚のカードに書いてある数の積が奇数になる確率を求めなさい.

図は動画内参照
この動画を見る 

【高校数学】 数B-54 空間における平面・直線の方程式②

アイキャッチ画像
単元: #数Ⅱ#平面上のベクトル#図形と方程式#点と直線#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次のような直線の方程式を媒介変数$t$を用いて表そう.

①点$(3,2,1)$を通り,$\overrightarrow{a}=(0,2,1)$に平行な直線

②2点$(5,8,-7),(6,-9,3)$を通る直線

③点$(2,-1,3)$を通り,ベクトル$(5,2,-2)$に平行な直線と,
平面$3x-2y=-4$との交点の座標を求めよう.
この動画を見る 

【意外とできない人が多い】アポロニウスの円について3分で解説!〔数学、高校数学〕

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
アポロニウスの円について解説します。
2点A(-2,0)と点B(4,0)からの距離の比が2:1であるような点軌跡を求めよ。
この動画を見る 

福田の数学〜立教大学2023年経済学部第3問〜放物線と直線で囲まれた図形の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#学校別大学入試過去問解説(数学)#面積、体積#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ pを正の実数とする。Oを原点とする座標平面上の放物線C:$y$=$\frac{1}{4}x^2$上の点P$\left(p, \frac{1}{4}p^2\right)$における接線を$l$、Pを通り$x$軸に垂直な直線を$m$とする。また、$m$上の点Q$\left(p, -1\right)$を通り$l$に垂直な直線を$n$とし、$l$と$n$の交点をRとする。さらに、$l$に関してQと対称な点をSとする。このとき、次の問いに答えよ。
(1)$l$の方程式を$p$を用いて表せ。
(2)$n$の方程式およびRの座標をそれぞれ$p$を用いて表せ。
(3)Sの座標を求めよ。
(4)$l$を対象軸として、$l$に関して$m$と対称な直線$m'$の方程式を$p$を用いて表せ。
また、$m'$とCの交点のうちPと異なる点をTとするとき、Tの$x$座標を$p$を用いて表せ。
(5)(4)のTに対して、線分ST、線分OSおよびCで囲まれた部分の面積を$p$を用いて表せ。
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第1問(2)〜折れ線の最小と内接円の半径

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#三角関数#点と直線#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)aは正の定数とする。原点をOとするxy平面上に直線l:y=$\frac{2}{3}$xと2点A(0,a), B(17,20)がある。直線l上にとった動点Pと2点A,Bそれぞれを線分で結び、2つの線分の長さの和AP+BPが最小となったとき、$\angle APO$=45°であった。AP+BPが最小であるとき、直線BPを表す方程式はy=$\boxed{\ \ ウ\ \ }$であり、三角形ABPの内接円の半径は$\boxed{\ \ エ\ \ }$である。

2023慶應義塾大学薬学部過去問
この動画を見る 
PAGE TOP