問題文全文(内容文):
${\Large\boxed{1}}$(2)$t$を実数とする。座標平面上の3つの直線
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+(2t-2)y-4t+2=0 \\
x+(2t+2)y-4t-2=0 \\
2tx+y-4t=0
\end{array}
\right.
(-2 \leqq t \leqq 1)
\end{eqnarray}$
が1つの点で交わるようなtの値を全て求めると$t=\boxed{イ}$である。
2021立教大学理学部過去問
${\Large\boxed{1}}$(2)$t$を実数とする。座標平面上の3つの直線
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+(2t-2)y-4t+2=0 \\
x+(2t+2)y-4t-2=0 \\
2tx+y-4t=0
\end{array}
\right.
(-2 \leqq t \leqq 1)
\end{eqnarray}$
が1つの点で交わるようなtの値を全て求めると$t=\boxed{イ}$である。
2021立教大学理学部過去問
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)$t$を実数とする。座標平面上の3つの直線
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+(2t-2)y-4t+2=0 \\
x+(2t+2)y-4t-2=0 \\
2tx+y-4t=0
\end{array}
\right.
(-2 \leqq t \leqq 1)
\end{eqnarray}$
が1つの点で交わるようなtの値を全て求めると$t=\boxed{イ}$である。
2021立教大学理学部過去問
${\Large\boxed{1}}$(2)$t$を実数とする。座標平面上の3つの直線
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+(2t-2)y-4t+2=0 \\
x+(2t+2)y-4t-2=0 \\
2tx+y-4t=0
\end{array}
\right.
(-2 \leqq t \leqq 1)
\end{eqnarray}$
が1つの点で交わるようなtの値を全て求めると$t=\boxed{イ}$である。
2021立教大学理学部過去問
投稿日:2021.10.03