【数学】中高一貫校問題集2幾何122:円:円の接線:内接円の性質 - 質問解決D.B.(データベース)

【数学】中高一貫校問題集2幾何122:円:円の接線:内接円の性質

問題文全文(内容文):
図の△ABCは、∠C=90°の直角三角形である。AB=10cm、BC=8cm、CA=6cmとし、△ABCの内接円の中心をIとする。また、直線AIと辺BCの交点をD、円ⅠとBC、CAの接点をそれぞれE、Fとする。
(1)円Iの半径を求めなさい。
(2)BD:DCを求めなさい。
(3)線分DEの長さを求めなさい。
チャプター:

0:00 オープニング
0:05 問題文
0:28 (1)解説
1:12 (2)解説
1:54 (3)解説
2:41 エンディング

単元: #数学(中学生)#中3数学#円
教材: #TK数学#TK数学問題集2(幾何編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
図の△ABCは、∠C=90°の直角三角形である。AB=10cm、BC=8cm、CA=6cmとし、△ABCの内接円の中心をIとする。また、直線AIと辺BCの交点をD、円ⅠとBC、CAの接点をそれぞれE、Fとする。
(1)円Iの半径を求めなさい。
(2)BD:DCを求めなさい。
(3)線分DEの長さを求めなさい。
投稿日:2023.11.21

<関連動画>

【高校受験対策】数学-関数40

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
下の図のように、関数$y=\frac{1}{3}x^2$のグラフ上に2点$A$、$B$がある。
点Aの$x$座標は$-6$、点$B$の$x$座標は$3$であり、2点$A$、$B$を通る直線と$x$軸との交点を$C$とする。
このとき、次の間1~問6に答えなさい。

問1 点$B$の$y$座標を求めなさい。

問2 関数$y=\frac{1}{3}x^2$について、 $x$の変域が$-6 \leqq x \leqq 3$のときの$y$の変域を求めなさい。

問3 2点$A$、$B$を通る直線の式を求めなさい。

問4 点$C$の座標を求めなさい。

問5 $△OAB$の面積を求めなさい。

問6 $y=\frac{1}{3}x^2$のグラフ上に点$P$にある。$△POC$の面積が$△OAB$の面積と等しくなるような点$P$の$x$座標をすべて求めなさい。
この動画を見る 

【この動画で数学が好きになる!?】平方根:渋谷教育学園幕張高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)#渋谷教育学園幕張高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 渋谷教育学園幕張高等学校

$x+\displaystyle \frac{1}{x}=5-\sqrt{ 5 }$のとき
$\displaystyle \frac{\sqrt{ x^4-10x^3+25x^2-10x+1 }}{x}$
の値を求めなさい。
この動画を見る 

式の値 昭和学院秀英

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 数学を数楽に
問題文全文(内容文):
昭和学院秀英高等学校過去問

\begin{eqnarray}
\left\{
\begin{array}{l}
2x + 2y - xy&=& 7 \\
x + y + 4xy&=& -1
\end{array}
\right.
\end{eqnarray}
$$x^2 + y^2 - 3xy = ?$$
この動画を見る 

【中学数学】2次方程式:2次方程式x²+ax+b=0の解が3と8のとき、a,bの値を求めよ。

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次方程式$x^2+ax+b=0$の解が3と8のとき、a,bの値を求めよ。
この動画を見る 

【高校受験対策/数学】図形-43

アイキャッチ画像
単元: #数学(中学生)#中3数学#相似な図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形43

Q.
$AB=10cm$、$AB<AD$の長方形$ABCD$を、
右の図1のように、折り目が点$C$を通り、点$B$が辺$AD$上にくるように折り返す。
点$B$が移った点を$E$とし、折り目を線分$CF$とすると、$AF=4cm$であった。
このとき、次の問いに答えなさい。

①$\triangle AEF \backsim \triangle DCE$であることを証明せよ。

②線分$AE$の長さを求めよ。

③右の図2のように、折り返した部分をもとにもどし、線分$CE$と線分$BD$との交点を$G$とする。
このとき、四角形$BGEF$の面積を求めよ。
この動画を見る 
PAGE TOP