福田のおもしろ数学247〜複雑な無理方程式の解を1つ見つける - 質問解決D.B.(データベース)

福田のおもしろ数学247〜複雑な無理方程式の解を1つ見つける

問題文全文(内容文):
$
5(\sqrt{1-x}+\sqrt{1+x})=6x+8\sqrt{1-x^2}
$の解を1つ求めて下さい。
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$
5(\sqrt{1-x}+\sqrt{1+x})=6x+8\sqrt{1-x^2}
$の解を1つ求めて下さい。
投稿日:2024.09.05

<関連動画>

13神奈川県教員採用試験(数学:9番 数列の極限値)

アイキャッチ画像
単元: #関数と極限#数列の極限#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
9⃣$a_1=1,a_2=2,(a_{n+2})^5 =(a_{n+1})^4・a_n$
$\displaystyle \lim_{ n \to \infty } a_n$を求めよ。
この動画を見る 

【数Ⅲ】極限:三角関数と極限(sinx/x=1の利用3)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極限値を求めよう。
$\displaystyle \lim_{x\to\infty}\dfrac{\sin\left(\dfrac{\sin x}{\pi}\right)}{x}$
この動画を見る 

【数Ⅲ】【関数と極限】半径aの円Oの周上に動点Pと定点Aがある。Aにおける接線上にAQ=APであるような点Qを直線OAに関してPと同じ側にとる。PがAに限りなく近づくときPQ/⌒AP²の極限値を求めよ

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
半径 $a$ の円 $\mathrm{O}$ の周上に動点 $\mathrm{P}$ と定点 $\mathrm{A}$ がある。
$\mathrm{A}$ における接線上に
$\mathrm{AQ = AP}$ であるような点 $\mathrm{Q}$ を直線 $\mathrm{OA}$ に関して $\mathrm{P}$ と同じ側にとる。
$\mathrm{P}$ が $\mathrm{A}$ に限りなく近づくとき$,$ $\displaystyle \frac{\mathrm{PQ}}{\mathrm{\stackrel{\huge\frown}{AP}}^2}$ の極限値を求めよ。
ただし$,$ $\mathrm{\stackrel{\huge\frown}{AP}}$ は $\angle \mathrm{AOP}$ ($\displaystyle 0 \lt \angle \mathrm{AOP} \lt \frac{\pi}{2}$)に対する
弧 $\mathrm{AP}$ の長さを表す。
この動画を見る 

福田の数学〜神戸大学2024年理系第1問〜無理関数を利用して定義された数列の一般項

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#神戸大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ $c$を正の実数とする。各項が正である数列$\left\{a_n\right\}$を次のように定める。$a_1$は関数
$y$=$x$+$\sqrt{c-x^2}$ (0≦$x$≦$\sqrt c$)
が最大値をとるときの$x$の値とする。$a_{n+1}$は関数
$y$=$x$+$\sqrt{a_n-x^2}$ (0≦$x$≦$\sqrt{a_n}$)
が最大値をとるときの$x$の値とする。数列$\left\{b_n\right\}$を$b_n$=$\log_2a_n$ で定める。以下の問いに答えよ。
(1)$a_1$を$c$を用いて表せ。
(2)$b_{n+1}$を$b_n$を用いて表せ。
(3)数列$\left\{b_n\right\}$の一般項を$n$と$c$を用いて表せ。
この動画を見る 

福田のわかった数学〜高校3年生理系020〜極限(20)関数の極限、無理関数の極限(5)

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 無理関数の極限(5)

$\displaystyle\lim_{x \to \infty}(\sqrt{x^2+2x+3}-(ax+b))$
を求めよ。
この動画を見る 
PAGE TOP