神戸大 N進法 - 質問解決D.B.(データベース)

神戸大 N進法

問題文全文(内容文):
$N_{(10)}$を7進法、11進法で表すといずれも3ケタになり、数字の並びが反対であった。
$N_{(10)}$を求めよ
$ac \neq 0$

出典:1968年神戸大学 過去問
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$N_{(10)}$を7進法、11進法で表すといずれも3ケタになり、数字の並びが反対であった。
$N_{(10)}$を求めよ
$ac \neq 0$

出典:1968年神戸大学 過去問
投稿日:2020.03.16

<関連動画>

愛媛 香川 大分 整式の剰余 整数 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#複素数#数列#漸化式#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)#愛媛大学#香川大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
愛媛大学過去問題
$x^{2009}$を$x^2+1$で割った時の余りを求めよ。

香川大学
$6n^5-15n^4+10n^3-n$は30の倍数であることを示せ。

大分大学
$a_1=2,a_{n+1}=4a_n-s_n$のときの一般項を求めよ。
$s_n=\displaystyle\sum_{k=1}^n a_k$である。
この動画を見る 

九州大学 素数 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2015九州大学過去問題
(1)nが正の偶数のとき、$2^n-1$は3の倍数であることを示せ。
(2)nを自然数とする。$2^n+1$と$2^n-1$は互いに素であることを示せ。
(3)p,qは異なる素数とする。$2^{P-1}-1 = pq^2$を満たすp,qをすべて求めよ。
この動画を見る 

福田のおもしろ数学315〜不定方程式の整数解

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$x^3 +y^3 +z^3 -3xyz=2003$を満たす整数$x, y, z$をすべて求めよ。
この動画を見る 

明治学院大 整数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{10^{130}}{13}$の小数第一位を求めよ.

2021明治学院大過去問
この動画を見る 

ざ・見掛け倒しだよ

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+……+\dfrac{32}{33}=\dfrac{a}{33!}$
$a$を$17$で割った余りを求めよ.
この動画を見る 
PAGE TOP