【数列】超基本的な問題です!解けますか?【甲南大学】 - 質問解決D.B.(データベース)

【数列】超基本的な問題です!解けますか?【甲南大学】

問題文全文(内容文):
9を分母とする正の既約分数で,100より小さいものの総和を求めよ。

甲南大過去問
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
9を分母とする正の既約分数で,100より小さいものの総和を求めよ。

甲南大過去問
投稿日:2023.01.23

<関連動画>

どっかの都道府県の教採の問題 数列 個人的に数列では過去一の難問

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n5^{-k}k(k+1)a_k=2(n+\displaystyle \frac{1}{4})^2$

(1)$a_n$を求めよ。
(2)$\displaystyle \sum_{k=1}^na_k$を求めよ。
この動画を見る 

【高校数学】和の記号・シグマの公式の証明 3-8.5【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
次式を証明せよ。
$\displaystyle \sum_{i=1}^n k^2=\frac{1}{6}n(n+1)(2n+1)$
$\displaystyle \sum_{i=1}^n k^3=\{ \frac{1}{2}n(n+1)\}^2$
この動画を見る 

香川大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#数学(高校生)#香川大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
94年香川大学過去問

$a_1=1$,$a_2=3$

$a_{n+2}=a_{n+1}^2a_{n}^3$

数列{$a_{n}$}の一般項を求めよ
この動画を見る 

福田の1.5倍速演習〜合格する重要問題068〜千葉大学2017年度理系第11問〜部分和で定義された数列の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#千葉大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{11}}$ 数列$\left\{a_n\right\}$を次の条件によって定める。
$a_1=2$,  $a_{n+1}=1+\frac{1}{\displaystyle1-\sum_{k=1}^n\frac{1}{a_k}}$ (n=1,2,3,$\cdots$)
(1) $a_5$を求めよ。
(2) $a_{n+1}$を$a_n$の式で表せ。
(3) 無限級数$\displaystyle\sum_{k=1}^{\infty}\frac{1}{a_k}$が収束することを示し、その和を求めよ。

2017千葉大学理系過去問
この動画を見る 

田の数学〜早稲田大学2021年人間科学部第3問〜格子点の個数

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$
自然数$n$について、連立不等式
$\left\{\begin{array}{1}
x \geqq 0\\
\displaystyle\frac{1}{4}x+\frac{1}{5}|y| \leqq n\\
\end{array}\right.$
を満たす整数の組$(x, y)$の個数は、$n=1$のときは$\boxed{\ \ シ\ \ }$であり、$n$の式で表すと$\boxed{\ \ ス\ \ }n^2+\boxed{\ \ セ\ \ }n+\boxed{\ \ ソ\ \ }$となる。

2021早稲田大学人間科学部過去問
この動画を見る 
PAGE TOP