【数列】超基本的な問題です!解けますか?【甲南大学】 - 質問解決D.B.(データベース)

【数列】超基本的な問題です!解けますか?【甲南大学】

問題文全文(内容文):
9を分母とする正の既約分数で,100より小さいものの総和を求めよ。

甲南大過去問
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
9を分母とする正の既約分数で,100より小さいものの総和を求めよ。

甲南大過去問
投稿日:2023.01.23

<関連動画>

熊本大 漸化式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
熊本大学過去問題
$a_1=b_1=1,b_{n+1}=3b_n+a_n$
$c_n=a_n+b_n+1$
数列{$c_n$}は公比3の等比数列である。
(1)$a_n$をnで表せ。
(2)$b_n$をnで表せ。
この動画を見る 

合同式 数学的帰納法 東工大

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$79^n+(-1)^n.2^{6n-5}$は必ずある自然数であるとき,$m$の倍数と最大値を求めよ.

東工大過去問
この動画を見る 

漸化式と整数問題の融合

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$a_1=10,a_{n+1}=2a_n+3^{n+1}$
$a_n$が7の倍数となるような$n$を求めよ.
この動画を見る 

横浜国大 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
横浜国立大学過去問題
P素数、n自然数
$P^n$を分母とする既約分数で、0より大きく、1より小さいものの総和を$S_n$
$S_1,S_2,S_3$
$S_n$を求めよ。
この動画を見る 

【数B】【数列】群数列 ※問題文は概要欄

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
自然数の列を、次のように1個、2個、4個、8個、……、2^(n-1)個、……の群に分ける。
1 | 2, 3 | 4, 5, 6, 7 | 8, 9, 10, 11, 12, 13, 14, 15 | 16, ……
(1)第n群の最初の自然数を求めよ。
(2)500は第何群の第何項か。
(3)第n群にあるすべての自然数の和を求めよ。

問題2
数列1, 1, 4, 1, 4, 9, 1, 4, 9, 16, 1, 4, 9, 16, 25, 1,……がある。
(1)nを自然数としたとき、自然数n²が初めて現れるのは第何項か。
(2) 第100項を求めよ。
(3)初項から第100項までの和を求めよ。

問題3
数列
(1/2), (1/3), (2/3), (1/4), (2/4), (3/4), (1/5), (2/5), (3/5), (4/5), (1/6), ……
において、初項から第800項までの和を求めよ。
この動画を見る 
PAGE TOP