大学入試問題#633「計算力勝負」 日本医科大学(2018年) #積分方程式 僚太さんの紹介 - 質問解決D.B.(データベース)

大学入試問題#633「計算力勝負」 日本医科大学(2018年) #積分方程式 僚太さんの紹介

問題文全文(内容文):
$f(x)$:微分可能
$x \gt -1$
$f(x)=log(x+1)+\displaystyle \int_{0}^{x} f(x-t)\sin\ t\ dt$を満たす$f(x)$を求めよ

出典:2018年日本医科大学 入試問題
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#日本医科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)$:微分可能
$x \gt -1$
$f(x)=log(x+1)+\displaystyle \int_{0}^{x} f(x-t)\sin\ t\ dt$を満たす$f(x)$を求めよ

出典:2018年日本医科大学 入試問題
投稿日:2023.10.28

<関連動画>

福田の数学〜慶應義塾大学2024総合政策学部第2問〜定積分で表された関数の最大値

アイキャッチ画像
単元: #微分法と積分法#不定積分・定積分
指導講師:
問題文全文(内容文):
負でない実数$\ t\ $に対して定義される関数$\displaystyle \ f(t)\ =\ \frac{9}{2}t-3\int_{0}^{1}|(x-t)(x-2t)|dx\ \ $の最大値を求めよ。
この動画を見る 

【数Ⅱ】【微分法と積分法】係数比較から関数の決定 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次関数$f(x)$の1つの不定積分$F(x)$が$xf(x)-2x^3+3x^2$に等しく、$f(1)=0$であるとき、$f(x)$を求めよ。
この動画を見る 

練習問題30 積分(y軸回転体) 数検 教採

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#その他#不定積分・定積分#数学検定#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$y=\log(x+1),y=3$
$y$軸で囲まれた部分を$y$軸を中心として
回転したときの体積$V$を求めよ.
この動画を見る 

福田の数学〜京都大学2025理系第1問(2−1)〜定積分の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2-1)次の定積分の値を求めよ。

$\displaystyle \int_{0}^{\sqrt3} \dfrac{x\sqrt{x^2+1}+2x^3+1}{x^2+1}dx$

$2025$年京都大学理系過去問題
この動画を見る 

福田の数学〜立教大学2025経済学部第1問(5)〜絶対値の付いた関数の定積分の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(5)定積分$\displaystyle \int_{0}^{2} (x+1)\vert x-1 \vert dx$

の値は$\boxed{キ}$である。

$2025$年立教大学経済学部過去問題
この動画を見る 
PAGE TOP