【テストによく出る!】漸化式の典型問題はこう解く!〔数学、高校数学〕 - 質問解決D.B.(データベース)

【テストによく出る!】漸化式の典型問題はこう解く!〔数学、高校数学〕

問題文全文(内容文):
以下の漸化式で表される数列の一般項を求めよ。
$a_{n+1}=2a_n+3$ $a_1=1$
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
以下の漸化式で表される数列の一般項を求めよ。
$a_{n+1}=2a_n+3$ $a_1=1$
投稿日:2022.06.22

<関連動画>

福田の数学〜中央大学202理工学部第3問〜関数の列と漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#微分とその応用#色々な関数の導関数#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数$f(x),g(x)$に対し、$s_n(x)=f(x)^n+g(x)^n$とおき、さらに$s_1(x)=x, s_2(x)=x^2+2$が成り立つとする。
(1) $f(x)+g(x)$と$s_3(x)$を求めよ。
(2) $s_{n+2}(x)$を$s_n(x)$と$s_{n+1}(x)$を用いて表せ。
(3) $s_n(x)$の$x=0$における値$s_n(0)$と微分係数$s_n'(0)$を求めよ。
この動画を見る 

【群数列ニガテな人は見て!!】群数列はこれさえ出来れば大丈夫!〔数学、高校数学〕

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
2から順に偶数を並べた数列で、 各郡に含まれる数が、1、3、5$\cdots$個と なるような数列を考える。
2|4,6,8|10,12,14,16,18|20,$\cdots$
このとき、第n郡の初項と末項を求めよ
この動画を見る 

弘前大 漸化式 一般項を求めよ 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#数学(高校生)#弘前大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
弘前大学過去問題
$a_1 = 2$
$a_{n+1}= \frac{n+2}{n}a_n+1$
この動画を見る 

【高校数学】数Ⅲ-71 数列の極限⑦(無限等比数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$a_1=1,a_{n+1}=\dfrac{1}{3}a_n+2(n=1,2,・・・)$によって
定められる数列$\{a_n\}$について、$\displaystyle \lim_{n\to\infty}a_n$を求めよ。

②$a_1=o,a_2=1,a_{n+2}=\dfrac{1}{4}(a_{n+1}+3a_n)(n=1,2,・・・)$によって
定められる数列$\{a_n\}$について、$\displaystyle \lim_{n\to\infty}a_n$を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2023年看護医療学部第2問(3)〜推定して数学的帰納法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (3) 次の条件によって定められる数列$\left\{a_n\right\}$がある。
$a_1$=1, $a_{n+1}$=$\sqrt{a_n^2+1}$ ($n$=1,2,3,...)
(i)$a_2$=$\boxed{\ \ シ\ \ }$, $a_3$=$\boxed{\ \ ス\ \ }$であり、一般項$a_n$を推定すると$a_n$=$\boxed{\ \ セ\ \ }$である。
(ii)一般項$a_n$が$a_n$=$\boxed{\ \ セ\ \ }$であることの数学的帰納法による証明を述べよ。

2023慶應義塾大学看護医療学部過去問
この動画を見る 
PAGE TOP