大学入試問題#417「一度は経験しときたい問題」 藤田保健衛生大学医学部2016 #微分の応用 - 質問解決D.B.(データベース)

大学入試問題#417「一度は経験しときたい問題」 藤田保健衛生大学医学部2016 #微分の応用

問題文全文(内容文):
$3^\pi \gt \pi^3$を示せ
$e \lt 3 \lt \pi$は利用してよい

出典:2016年藤田保健衛生大学医学部 入試問題
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$3^\pi \gt \pi^3$を示せ
$e \lt 3 \lt \pi$は利用してよい

出典:2016年藤田保健衛生大学医学部 入試問題
投稿日:2023.01.08

<関連動画>

福田の数学〜東京慈恵会医科大学2023年医学部第2問〜定積分で表された関数と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ nを自然数、aを正の定数とする。関数f(x)は等式
$f(x)=x+\displaystyle\frac{1}{n}\int_0^xf(t)dt$
を満たし、関数g(x)は$g(x)$=$ae^{-\frac{x}{n}}+a$とする。2つの曲線y=f(x)とy=g(x)はある1点を共有し、その点における2つの接線が直交するとき、次の問いに答えよ。ただし、eは自然対数の底とする。
(1)h(x)=$e^{-\frac{x}{n}}f(x)$とおくとき、導関数h'(x)とh(x)を求めよ。
(2)aをnを用いて表せ。
(3)2つの曲線y=f(x), y=g(x)とy軸で囲まれた部分の面積を$S_n$とするとき、
極限値$\displaystyle\lim_{n \to \infty}\frac{S_1+S_2+\cdots+S_n}{n^3}$ を求めよ。

2023東京慈恵会医科大学医学部過去問
この動画を見る 

数Ⅲ微分!絶対に落としたくない問題です【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x>0$に対して,$(1+x)^{\frac{1}{x}}<e<(1+x)^{\frac{1}{x}+1}$が成り立つことを示せ。

一橋大過去問
この動画を見る 

福田の数学〜明治大学2021年理工学部第3問〜単位ベクトルと関数の増減

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#大学入試解答速報#数学#明治大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} Oを原点とする座標平面上の曲線\ y=\log xをCとする。正の実数\ tに対し、\hspace{30pt}\\
曲線C上の点P(t,\log t)におけるCの法線Lの傾きは\boxed{\ \ か\ \ }である。Lに平行な\\
単位ベクトル\ \overrightarrow{ n }\ で、その\ x\ 成分が正であるものは\overrightarrow{ n }=(\boxed{\ \ き\ \ },\ \boxed{\ \ く\ \ })である。\\
さらに、rを正の定数とし、点Qを\overrightarrow{ OQ }=\overrightarrow{ OP }+r\ \overrightarrow{ n }により定めると、\\
Qの座標は(\boxed{\ \ け\ \ },\ \boxed{\ \ こ\ \ })となる。ここで点Qのx座標とy座標をtの関数と見て、\\
それぞれX(t),\ Y(t)とおくとX(t),\ Y(t)の導関数を成分とするベクトル(X'(t),\ Y'(t))\\
はrによらないベクトル(1,\ \boxed{\ \ さ\ \ })と平行であるか、零ベクトルである。\\
定数rの取り方によって関数X(t)の増減の様子は変わる。X(t)が区間\ t \gt 0で\\
常に増加するようなrの値の範囲は\boxed{\ \ し\ \ }である。また、r=2\sqrt2のとき、X(t)は\\
区間\ \boxed{\ \ す\ \ } \leqq t \leqq \boxed{\ \ せ\ \ }で減少し、区間\ 0 \lt t \leqq \boxed{\ \ す\ \ }と区間\ t \geqq \boxed{\ \ せ\ \ }で増加する。
\end{eqnarray}

2021明治大学理工学部過去問
この動画を見る 

福田の数学〜北里大学2021年医学部第3問〜関数の増減とはさみうちの原理による数列の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#数列の極限#微分法#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 関数$f(x)=x^5-2x^3+9x$について考える。実数$t$に対して$y=f(x)$上の点($t, f(t)$)における接線と$x$軸の交点の$x$座標を$g(t)$とおく。
また、正の実数$t$に対して$h(t)=\displaystyle\frac{g(t)}{t}$とおく。次の問いに答えよ。
(1)$g(t)$を求めよ。
(2)$h'(t)=0$を満たす正の実数$t$を求めよ。
(3)実数$p$は、すべての正の実数$t$に対して|$h(t)$|$\leqq p$を満たすとする。
このような$p$の最小値を求めよ。
(4)$a$を定数とする。$a_1=a, a_{n+1}=g(a_n)$ $(n=1,2,3...)$で定められる数列
$\left\{a_n\right\}$に対して、$\displaystyle\lim_{n \to \infty}a_n=0$となることを示せ。

2021北里大学医学部過去問
この動画を見る 

福田の数学〜東京慈恵会医科大学2023年医学部第4問〜ベクトル方程式と関数の増減

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数C#数Ⅲ#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ Oを原点とする座標空間に2点A(0,0,1), B(0,0,-1)がある。r>0, -π≦θ<πに対して、2点P(r$\cos\theta$,r$\sin\theta$,0),Q($\frac{1}{r}\cos\theta$,$\frac{1}{r}\sin\theta$,0)をとり、2直線APとBQの交点をR(a,b,c)とするとき、次の問いに答えよ。
(1)a,b,cの間に成り立つ関係式を求めよ。
(2)点G(4,1,1)をとる。r,θがr$\cos\theta$=$\frac{1}{2}$を満たしながら変化するとき、内積$\overrightarrow{OG}・\overrightarrow{OR}$の最大値とそのときのa,b,cの値を求めよ。

2023東京慈恵会医科大学医学部過去問
この動画を見る 
PAGE TOP