福田の数学〜慶應義塾大学2021年経済学部第4問〜対数不等式と数列 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年経済学部第4問〜対数不等式と数列

問題文全文(内容文):
${\Large\boxed{4}}$
$k$を実数の定数とする。実数$x$は不等式
(*)$2\log_5x-\log_5(6x-5^k) \lt k-1$
を満たすとする。

(1)不等式(*)を満たすxの値の範囲を、$k$を用いて表せ。

(2)$k$を自然数とする。(*)を満たす$x$のうち奇数の個数を$a_k$とし
$S_n=\sum_{k=1}^na_k (n=1,2,3,\ldots)$
とおく。$a_k$を$k$の式で表し、さらに$S_n$を$n$の式で表せ。

(3)(2)の$S_n$に対して、$S_n+n$が10桁の整数となるような自然数$n$
の値を求めよ。なお、必要があれば$0.30 \lt \log_{10}2 \lt 0.31$を用いよ。

2021慶應義塾大学経済学過去問
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$
$k$を実数の定数とする。実数$x$は不等式
(*)$2\log_5x-\log_5(6x-5^k) \lt k-1$
を満たすとする。

(1)不等式(*)を満たすxの値の範囲を、$k$を用いて表せ。

(2)$k$を自然数とする。(*)を満たす$x$のうち奇数の個数を$a_k$とし
$S_n=\sum_{k=1}^na_k (n=1,2,3,\ldots)$
とおく。$a_k$を$k$の式で表し、さらに$S_n$を$n$の式で表せ。

(3)(2)の$S_n$に対して、$S_n+n$が10桁の整数となるような自然数$n$
の値を求めよ。なお、必要があれば$0.30 \lt \log_{10}2 \lt 0.31$を用いよ。

2021慶應義塾大学経済学過去問
投稿日:2021.07.08

<関連動画>

高知大 筑波大 指数方程式 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#筑波大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
高知大学過去問題
$f(x)=x^4+4^{-x}-2^{2+x}-2^{2-x}+2$
①f(x)の最小値とそのときのxの値
②f(x)=0を解け

筑波大学過去問題
$(5+\sqrt2)^n=a_n+b_n\sqrt2 \quad (n自然数)$
$a_n$,$b_n$をnを用いて表せ。
この動画を見る 

『Σ』の記号の意味を理解させます

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
『$\Sigma$』の記号の意味を理解させます
この動画を見る 

滋賀医科大 複雑な問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#滋賀医科大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n!=2^{an}m(n \geqq 2,m$奇数$)$

(1)
$\displaystyle \frac{(2n)!}{2^nn!}$は奇数 示せ


(2)
$a_{2n}-a_n$を$n$で表せ


(3)
$n=2^k$のときの$a_n$
$n$を用いて表せ


(4)
$a_n \lt n$を表せ


(5)
$\sqrt[ n ]{ n! }$は無理数 示せ

出典:滋賀医科大学 過去問
この動画を見る 

福田の一夜漬け数学〜確率漸化式(2)〜推移図の作り方のコツ(受験編)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 正三角形ABCの頂点$A$に小石が置いてある。1秒ごとにこの小石は
隣の頂点のどちらかに等確率で移動する。$n$秒後にこの小石が頂点$A$
にある確率を$p_n$とするとき、$p_n$を求めよ。
この動画を見る 

いい問題

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
n自然数
$\sqrt{n}$に最も近い整数を$a_n$とする
(例)$a_3=2$,$a_{10}=3$
$\displaystyle\sum_{n=1}^{2023}\frac{1}{a_n}$を求めよ
この動画を見る 
PAGE TOP