一橋大 4次関数と接線・共有点 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

一橋大 4次関数と接線・共有点 Mathematics Japanese university entrance exam

問題文全文(内容文):
f(x)=x4+x3+ax2と直線lとの共有点は2個で、lはそのうちの一方のみでf(x)に接している。
このような直線が存在するaの範囲は?

出典:1996年一橋大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
f(x)=x4+x3+ax2と直線lとの共有点は2個で、lはそのうちの一方のみでf(x)に接している。
このような直線が存在するaの範囲は?

出典:1996年一橋大学 過去問
投稿日:2019.03.07

<関連動画>

指数方程式の解の配置 弘前大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
4x2x+1a+8a15=0の解が次の条件を満たすaの範囲を求めよ.
(1)ただ1つの実数解をもつとき
(2)相異なる2つの実数解がともに1以上のとき

弘前大過去問
この動画を見る 

福岡大(医)連立指数方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#福岡大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,yは1でない正の実数であるとする.これを解け.

{xx+y=y10yx+y=x90

福岡大(医)過去問
この動画を見る 

福田の入試問題解説〜東京大学2022年理系第4問〜3次関数のグラフと直線の囲む2つの部分の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標平面上の曲線
C:y=x3x
を考える。
(1)座標平面上の全ての点Pが次の条件(i)を満たすことを示せ。
(i)点Pを通る直線lで、曲線Cと相異なる3点で交わるものが存在する。
(2)次の条件(ii)を満たす点Pのとりうる範囲を座標平面上に図示せよ。
(ii)点Pを通る直線lで、曲線Cと相異なる3点で交わり、かつ、直線lと
曲線Cで囲まれた2つの部分の面積が等しくなるものが存在する。

2022東京大学理系過去問
この動画を見る 

【数学】中高一貫校問題集 数学3 数式・関数編 111 実数解が存在することの証明

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材: #TK数学#TK数学問題集3(数式・関数編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,b,cは実数の定数で、a≠0とする。2次方程式ax²+bx+c=0が、次の各場合に必ず実数解をもつことを証明せよ。

(1)b=a2+2c

(2)a+c=0

(3)aとcが異符号
この動画を見る 

福田のおもしろ数学361〜複雑な関数方程式の解

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
実数から実数への関数 f(x) が任意の実数 x, y に対して
f(yf(x+y)+f(x))=4x+2yf(x+y)
を満たしている。このような関数 f(x) をすべて求めよ。
この動画を見る 
PAGE TOP preload imagepreload image