問題文全文(内容文):
$f(x)=x^4+x^3+ax^2$と直線$l$との共有点は2個で、$l$はそのうちの一方のみで$f(x)$に接している。
このような直線が存在する$a$の範囲は?
出典:1996年一橋大学 過去問
$f(x)=x^4+x^3+ax^2$と直線$l$との共有点は2個で、$l$はそのうちの一方のみで$f(x)$に接している。
このような直線が存在する$a$の範囲は?
出典:1996年一橋大学 過去問
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4+x^3+ax^2$と直線$l$との共有点は2個で、$l$はそのうちの一方のみで$f(x)$に接している。
このような直線が存在する$a$の範囲は?
出典:1996年一橋大学 過去問
$f(x)=x^4+x^3+ax^2$と直線$l$との共有点は2個で、$l$はそのうちの一方のみで$f(x)$に接している。
このような直線が存在する$a$の範囲は?
出典:1996年一橋大学 過去問
投稿日:2019.03.07