大学入試問題#233 岡山県立大学(2012) #数列 - 質問解決D.B.(データベース)

大学入試問題#233 岡山県立大学(2012) #数列

問題文全文(内容文):
$a_1=1$
$a_{n+1}=\displaystyle \frac{4}{n}S_n$
一般項$a_n$を求めよ。

出典:2012年岡山県立大学 入試問題
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#岡山県立大学
指導講師: ますただ
問題文全文(内容文):
$a_1=1$
$a_{n+1}=\displaystyle \frac{4}{n}S_n$
一般項$a_n$を求めよ。

出典:2012年岡山県立大学 入試問題
投稿日:2022.06.20

<関連動画>

大学入試問題#69 高知大学(2012) 数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#数B
指導講師: ますただ
問題文全文(内容文):
各自然数$n$に対して
$a_n \gt 0$
$S_n=\displaystyle \frac{1}{2}a_n^2+\displaystyle \frac{1}{2}a_n-1$をみたす一般項$a_n$を求めよ。

出典:2012年高知大学 入試問題
この動画を見る 

中央大 三項間漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023中央大学過去問題
$a_n=(2+\sqrt{3})^n+(2-\sqrt{3})^n$
①$a_{n+2}+a_n=4a_{n+1}$を示せ
②$a_{n+1}+a_n$は3の倍数であることを示せ
③$a_{2023}$を3で割った余り
この動画を見る 

大阪市立大 奇数の平方の和

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#大阪市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2021大阪市立大学
nは奇数
$S_n=1+3+5+7+\cdots+n$
$T_n=1^2+3^2+5^2+7^2+\cdots+n^2$
①$S_n$,$T_n$をnの式で表せ
②$T_n$がnで割り切れるためのnの条件
この動画を見る 

計算しないで答えを出せ!奈良教育大

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#奈良教育大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m, n$は自然数、$m$は定数
$S(n)=1+2+3+...+mn$
$T(n)=S(n)-(1~mn間のmの倍数の和)$
$\displaystyle \lim_{ n \to \infty } \frac {T(n)}{S(n)}$
この動画を見る 

福田の数学〜早稲田大学2025商学部第1問(2)〜3項間漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2)数列$\{a_n\}$が次の条件を満たしている。

$a_1=a_{2025}=0,a_{n+1}-2a_n+a_{n-1}=-1 \ (n=2,3,4,\cdots)$

このとき、一般項$a_n$は$a_n=\boxed{イ}$である。

$2025$年早稲田大学商学部過去問題
この動画を見る 
PAGE TOP