【数Ⅲ】極方程式をゼロからはじめましょう - 質問解決D.B.(データベース)

【数Ⅲ】極方程式をゼロからはじめましょう

問題文全文(内容文):
極方程式を基礎から解説します
チャプター:

0:00 オープニング
0:37 直交座標への変換
5:15 極方程式への変換
9:44 エンディング

単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
極方程式を基礎から解説します
投稿日:2022.03.25

<関連動画>

福田のおもしろ数学406〜2次曲線のグラフを判定する

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\dfrac{x^2}{\sin\sqrt 2-\sin\sqrt 3}+\dfrac{y^2}{\cos\sqrt2-\cos\sqrt3}=1$

この方程式の表す図形の概形を描け。

この動画を見る 

【数C】【平面上の曲線】x²/16+y²/25 =1とy軸の交点をA、Bとする。楕円上の点をPとし、直線PA, PBとx軸の交点をそれぞれQ, R とするとき、 OQ・ORの値は一定であることを示せ。

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):

原点を $\mathrm{O}$、楕円 $\displaystyle \frac{x^2}{16}+\frac{y^2}{25}=1$ と $y$ 軸の交点を $\mathrm{A,B}$ とする。
$\mathrm{A,B}$ 以外の楕円上の点を$\mathrm{P}$ とし、直線 $\mathrm{PA,\ PB}$ と $x$ 軸の交点をそれぞれ $\mathrm{Q,R}$ とするとき、
$\mathrm{OQ \cdot OR}$ の値は一定であることを示せ。
この動画を見る 

【数Ⅲ】2次曲線:双曲線関数について(関数として知っておこう!知識編)

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
あまり学校で聞かない、双曲線関数の性質を教えます!(数学Ⅲにおける重要関数!)
この動画を見る 

15岡山県教員採用試験(数学:6番 サイクロイドの長さ)

アイキャッチ画像
単元: #平面上の曲線#2次曲線#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
曲線$c$ $\begin{eqnarray}
\left\{
\begin{array}{l}
x=r(\theta-\sin\theta) \\
y-r(1-\cos\theta)
\end{array}
\right.
\end{eqnarray}$
の長さ$\ell$を求めよ.

$r\gt 0,0\leqq \theta 2\pi$とする.
この動画を見る 

【数Ⅲ】双曲線関数について(関数として知っておこう!知識編)

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
あまり学校で聞かない、双曲線関数の性質を教えます!(数学Ⅲにおける重要関数!)
y=(e^x+e^(-x))/2と表される、カテナリー曲線の一種とは??
この動画を見る 
PAGE TOP