【高校数学】数Ⅲ-109 接線と法線② - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-109 接線と法線②

問題文全文(内容文):
①曲線$y=tan x \left(0 \lt x \lt \dfrac{\pi}{2}\right)$について、
傾きが2である接線の方程式を求めよ。

②曲線$y=\log x$について、原点から引いた接線の方程式を求めよ。

③曲線$y=\sqrt x$について、点$(-2,0)$から引いた接線の方程式と接点の座標を求めよ。
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①曲線$y=tan x \left(0 \lt x \lt \dfrac{\pi}{2}\right)$について、
傾きが2である接線の方程式を求めよ。

②曲線$y=\log x$について、原点から引いた接線の方程式を求めよ。

③曲線$y=\sqrt x$について、点$(-2,0)$から引いた接線の方程式と接点の座標を求めよ。
投稿日:2018.06.26

<関連動画>

福田のおもしろ数学395〜2変数関数の最大値

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$x\gt 0,y\gt 0$のとき、

$f(x,y=min \left(x,\dfrac{y}{x^2+y^2}\right)$

の最大値を求めて下さい。

*$min(a,b)$は$a,b$の大きくない方の値を
意味します。
この動画を見る 

あけましておめでとうございます

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
正の実数解を求めよ.
$2^x=x^2$

この動画を見る 

福田のおもしろ数学037〜相加相乗平均の罠〜2変数関数の最小値

アイキャッチ画像
単元: #数Ⅰ#2次関数#式と証明#恒等式・等式・不等式の証明#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$x>1,y>1$のとき、
$x+y+\frac{2}{x+y}+\frac{1}{2xy}$の最小値を求めよ
この動画を見る 

練習問題45 北海道大学 微分と積分 教員採用試験 数検準1級

アイキャッチ画像
単元: #大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#微分とその応用#積分とその応用#学校別大学入試過去問解説(数学)#その他#数学検定#数学検定準1級#数学(高校生)#北海道大学#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$0 \leqq x \leqq 2\pi$
関数
$f(x)=\displaystyle \int_{0}^{x}e^t\ cos\ t\ dt$の最大値とそのときの$x$の値を求めよ。

出典:北海道大学 教員採用試験
この動画を見る 

福田の数学〜慶應義塾大学2023年医学部第4問PART1〜円に内接する円の性質

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#複素数平面#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#円と方程式#微分とその応用#複素数平面#図形への応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 座標平面において原点Oを中心とする半径1の円を$C_1$とし、$C_1$の内部にある第1象限の点Pの極座標を(r, θ)とする。さらに点Pを中心とする円$C_2$が$C_1$上の点Qにおいて$C_1$に内接し、x軸上の点Rにおいてx軸に接しているとする。
また、極座標が(1, π)である$C_1$上の点をAとし、直線AQのy切片をtとする。
(1)rをθの式で表すとr=$\boxed{\ \ あ\ \ }$となり、tの式で表すとr=$\boxed{\ \ い\ \ }$となる。
(2)円$C_2$と同じ半径をもち、x軸に関して円$C_2$と対称な位置にある円$C'_2$の中心P'とする。三角形POP'の面積はθ=$\boxed{\ \ う\ \ }$のとき最大値$\boxed{\ \ え\ \ }$をとる。θ=$\boxed{\ \ う\ \ }$は条件t=$\boxed{\ \ お\ \ }$と同値である。
(3)円$C_1$に内接し、円$C_2$と$C'_2$の両方に外接する円のうち大きい方を$C_3$とする。円$C_3$の半径bをtの式で表すとb=$\boxed{\ \ か\ \ }$となる。
(4)3つの円$C_2$, $C'_2$, $C_3$の周の長さの和はθ=$\boxed{\ \ き\ \ }$の最大値$\boxed{\ \ く\ \ }$をとる。

2023慶應義塾大学看護医療学部過去問
この動画を見る 
PAGE TOP