ハルハルさんの積分問題(1) 「大技の連打」 #定積分 - 質問解決D.B.(データベース)

ハルハルさんの積分問題(1) 「大技の連打」 #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{x}{\sin\ x+\cos\ x+0.2} dx$
チャプター:

00:00 問題紹介
00:11 本編スタート
07:52 作成した解答①
08:01 作成した解答②
08:11 エンディング(楽曲提供:兄いえてぃさん)

単元: #積分とその応用#定積分#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{x}{\sin\ x+\cos\ x+0.2} dx$
投稿日:2022.12.23

<関連動画>

大学入試問題#462「~らん~さんからの紹介」 横国・信州大学 類題 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \displaystyle \frac{e^x+e^{-x}}{e^{(\sin^5x+1)}+e} dx$
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型理系第4問Part1〜不等式の証明と近似値計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#積分とその応用#定積分#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ $e$を自然対数の底とする。$e$=2.718...である。
(1)0≦$x$≦1において不等式1+$x$≦$e^x$≦1+2$x$が成り立つことを示せ。
(2)$n$を自然数とするとき、0≦$x$≦1において不等式
$\displaystyle\sum_{k=0}^n\frac{x^k}{k!}$≦$e^x$≦$\displaystyle\sum_{k=0}^n\frac{x^k}{k!}+\frac{x^n}{n!}$
が成り立つことを示せ。
(3)0≦$x$≦1を定義域とする関数$f(x)$を
$f(x)$=$\left\{\begin{array}{1}
1 (x=0)\\
\displaystyle\frac{e^x-1}{x} (0<x≦1)
\end{array}\right.$
と定義する。(2)の不等式を利用して、定積分$\displaystyle\int_0^1f(x)dx$ の近似値を小数第3位まで求め、求めた近似値と真の値との誤差が$10^{-3}$以下である理由を説明せよ。
この動画を見る 

【高校数学】毎日積分14日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^\frac{π}{2}e^{-3x}sinxdx$
これを解け.
この動画を見る 

【数Ⅲ-158】定積分で表された関数①

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分で表された関数①)
Q.次の関数を$x$について微分せよ。ただし$a$は定数とする。

①$\int_a^x \frac{t}{1+e^{2t}}dt$

➁$\int_0^{x} (x-t)e^{2t}dt$

③$\int_0^{2x+1} \frac{1}{t^2+1}dt$
この動画を見る 

福田の数学〜上智大学2021年TEAP利用理系第1問(3)〜非回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (3)\ 不等式\\
1 \leqq z \leqq 4,\ \frac{x^2}{z^2}+4z^4y^2 \leqq 1\\
が表す座標空間内の領域の体積は\boxed{\ \ え\ \ }である。\\
\\
\boxed{\ \ え\ \ }の選択肢:\\
(\textrm{a})\frac{3\pi}{2}  (\textrm{b})3\pi  (\textrm{c})\frac{3\pi^2}{2}  (\textrm{d})3\pi^2\\
(\textrm{e})\pi\log 2  (\textrm{f})\frac{\pi\log 2}{2}  (\textrm{g})3\pi^2\log 2  
\end{eqnarray}

2021上智大学理系過去問
この動画を見る 
PAGE TOP