三項間漸化式(応用)高知大 - 質問解決D.B.(データベース)

三項間漸化式(応用)高知大

問題文全文(内容文):
$a_1=18,a_2=48$である.
$a_{n+2}-5a_{n+1}+6a_n=2n^2$,一般項$a_n$を求めよ.

高知大過去問
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=18,a_2=48$である.
$a_{n+2}-5a_{n+1}+6a_n=2n^2$,一般項$a_n$を求めよ.

高知大過去問
投稿日:2020.06.01

<関連動画>

【数B】特殊な数列の一般項

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の数列の一般項を求めなさい。
$a_1=1$
$a_2=2+3+2$
$a_3=3+4+5+4+3$
$a_4=4+5+6+7+6+5+4$
この動画を見る 

東北大 分数型漸化式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#東北大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2008東北大学過去問題
$a_1=2 \quad a_{n+1}=\frac{4a_n+1}{2a_n+3}$
(1)$b_n = \frac{a_n+β}{a_n+α}$として$\{ b_n \}$が等比数列となるようなα,β(α>β)を1組求めよ。
(2)$\{ a_n \}$の一般項$a_n$を求めよ。
この動画を見る 

大学入試問題#105 京都大学(2003) 数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$a_n \gt 0,\ a_1=1$
$n \geqq 2$のとき
$log\ a_n-log\ a_{n-1}=log(n-1)-log(n+1)$である。
$\displaystyle \sum_{k=1}^n a_k$を求めよ

出典:2003年京都大学 入試問題
この動画を見る 

福田の一夜漬け数学〜確率漸化式(1)〜京都大学の問題(受験編)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $A,B,C$の3人が色のついた札を1枚ずつ持っている。初めに$A,B,C$
の持っている札の色はそれぞれ赤、白、青である。$A$がサイコロを
投げて、3の倍数の目が出たら$A$は$B$と持っている札を交換し、
その他の目が出たら$A$は$C$と札を交換する。この試行を$n$回繰り返し
た後に赤い札を$A,B,C$が持っている確率をそれぞれ$a_n,b_n,c_n$とする。

(1)$n \geqq 2$のとき、$a_n,b_n,c_n$を$a_{n-1},b_{n-1},b_{n-1}$で表せ。
(2)$a_n$を求めよ。
この動画を見る 

福田のおもしろ数学282〜ガウス記号で表された式の和を求める

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle \sum_{n=1}^{1000} [\frac{2^n}{3} ]$を求めて下さい。$[x]$は$x$をこえない最大の整数を表す。
この動画を見る 
PAGE TOP