福田の数学〜余りにも長い文章題の攻略ポイントは〜慶應義塾大学2023年総合政策学部第6問〜長文問題と1次不等式 - 質問解決D.B.(データベース)

福田の数学〜余りにも長い文章題の攻略ポイントは〜慶應義塾大学2023年総合政策学部第6問〜長文問題と1次不等式

問題文全文(内容文):
${\large\boxed{6}}$まず、1期目の交渉案の分配値が$\textrm{A}$と$\textrm{B}$共に紛争で期待できる価値以上であれば、交渉案を受け入れ紛争を起こさず、期待できる価値未満であれば紛争を起こすものとすると、$\textrm{A}$は自らの分配値が$\displaystyle\frac{\boxed{ア}}{35}$以上であれば交渉案を受け入れ、$\textrm{B}$は$\textrm{A}$の分配値が1以下であれば交渉権を受け入れる。また紛争が起きた場合には、2期目と3期目に$\textrm{A}$と$\textrm{B}$が期待できる価値は1期目に期待できる価値と同一とする。\begin{eqnarray}\end{eqnarray}

もし1期目に交渉が妥結した場合は、2期目に改めて交渉が行われ、$\textrm{A}$の分配値が$\displaystyle\frac{\boxed{イ}}{35}$以上で$\displaystyle\frac{\boxed{ウ}}{35}$以下ならば、$\textrm{A}$と$\textrm{B}$ともに紛争で期待できる価値以上なので$\textrm{A}$と$\textrm{B}$ともに交渉案を受け入れ紛争を起こさず、そうでない場合には紛争を起こし、その場合には3期目に$\textrm{A}$と$\textrm{B}$が期待できる価値は2期目に期待できる価値と同一とする。\begin{eqnarray}\end{eqnarray}

もし2期目に交渉が妥結した場合は、3期目に改めて交渉が行われ、$\textrm{A}$の分配値が$\displaystyle\frac{\boxed{エ}}{35}$以上で$\displaystyle\frac{\boxed{オ}}{35}$以下ならば、$\textrm{A}$と$\textrm{B}$ともに紛争で期待できる価値以上なの$\textrm{A}$と$\textrm{B}$共に交渉案を受け入れ紛争を起こさず、\begin{eqnarray}\end{eqnarray}

以下では、各期において交渉が妥結した場合には、$\textrm{A}$の分配値は$\textrm{A}$と$\textrm{B}$共に受け入れられる$\textrm{A}$の分配値の上限値と下限値の中間に定まるものと仮定しよう。すると、$\textrm{A}$が得られると期待できる価値の3期分の合計は、3期すべてで交渉が妥協した場合$\displaystyle\frac{\boxed{カ}}{35}$となり、1期目に紛争が起きた場合$\displaystyle\frac{\boxed{キ}}{35}$であり、2期目に紛争が起きた場合$\displaystyle\frac{\boxed{ク}}{35}$であり、3期目に紛争が起きた場合$\displaystyle\frac{\boxed{ケ}}{35}$となる。\begin{eqnarray}\end{eqnarray}

また、紛争コストが$\textrm{A}$と$\textrm{B}$共に$\displaystyle\frac{2}{5}$に増加した場合、$\textrm{A}$が得られると期待できる価値の3期分の合計は、3期すべてで交渉が妥結した場合$\displaystyle\frac{\boxed{コ}}{70}$となり、1期目に紛争が起きた場合、$\displaystyle\frac{\boxed{サ}}{70}$であり、2期目に紛争が起きた場合$\displaystyle\frac{\boxed{シ}}{70}$となる。さらに、紛争コストが$\textrm{A}$と$\textrm{B}$共に$\displaystyle\frac{2}{5}$に増加し、問題となっている土地の価値が2期と3期で$\textrm{A}$と$\textrm{A}$共に2に増加したとすると、$\textrm{A}$が得られると期待できる価値の3期分の合計は、3期すべてで交渉が妥結した場合$\displaystyle\frac{\boxed{ス}}{70}$となり、1期目に紛争が起きた場合$\displaystyle\frac{\boxed{セ}}{70}$であり、2期目に紛争が起きた場合$\displaystyle\frac{\boxed{ソ}}{70}$となる。

2023慶應義塾大学総合政策学部過去問
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{6}}$まず、1期目の交渉案の分配値が$\textrm{A}$と$\textrm{B}$共に紛争で期待できる価値以上であれば、交渉案を受け入れ紛争を起こさず、期待できる価値未満であれば紛争を起こすものとすると、$\textrm{A}$は自らの分配値が$\displaystyle\frac{\boxed{ア}}{35}$以上であれば交渉案を受け入れ、$\textrm{B}$は$\textrm{A}$の分配値が1以下であれば交渉権を受け入れる。また紛争が起きた場合には、2期目と3期目に$\textrm{A}$と$\textrm{B}$が期待できる価値は1期目に期待できる価値と同一とする。\begin{eqnarray}\end{eqnarray}

もし1期目に交渉が妥結した場合は、2期目に改めて交渉が行われ、$\textrm{A}$の分配値が$\displaystyle\frac{\boxed{イ}}{35}$以上で$\displaystyle\frac{\boxed{ウ}}{35}$以下ならば、$\textrm{A}$と$\textrm{B}$ともに紛争で期待できる価値以上なので$\textrm{A}$と$\textrm{B}$ともに交渉案を受け入れ紛争を起こさず、そうでない場合には紛争を起こし、その場合には3期目に$\textrm{A}$と$\textrm{B}$が期待できる価値は2期目に期待できる価値と同一とする。\begin{eqnarray}\end{eqnarray}

もし2期目に交渉が妥結した場合は、3期目に改めて交渉が行われ、$\textrm{A}$の分配値が$\displaystyle\frac{\boxed{エ}}{35}$以上で$\displaystyle\frac{\boxed{オ}}{35}$以下ならば、$\textrm{A}$と$\textrm{B}$ともに紛争で期待できる価値以上なの$\textrm{A}$と$\textrm{B}$共に交渉案を受け入れ紛争を起こさず、\begin{eqnarray}\end{eqnarray}

以下では、各期において交渉が妥結した場合には、$\textrm{A}$の分配値は$\textrm{A}$と$\textrm{B}$共に受け入れられる$\textrm{A}$の分配値の上限値と下限値の中間に定まるものと仮定しよう。すると、$\textrm{A}$が得られると期待できる価値の3期分の合計は、3期すべてで交渉が妥協した場合$\displaystyle\frac{\boxed{カ}}{35}$となり、1期目に紛争が起きた場合$\displaystyle\frac{\boxed{キ}}{35}$であり、2期目に紛争が起きた場合$\displaystyle\frac{\boxed{ク}}{35}$であり、3期目に紛争が起きた場合$\displaystyle\frac{\boxed{ケ}}{35}$となる。\begin{eqnarray}\end{eqnarray}

また、紛争コストが$\textrm{A}$と$\textrm{B}$共に$\displaystyle\frac{2}{5}$に増加した場合、$\textrm{A}$が得られると期待できる価値の3期分の合計は、3期すべてで交渉が妥結した場合$\displaystyle\frac{\boxed{コ}}{70}$となり、1期目に紛争が起きた場合、$\displaystyle\frac{\boxed{サ}}{70}$であり、2期目に紛争が起きた場合$\displaystyle\frac{\boxed{シ}}{70}$となる。さらに、紛争コストが$\textrm{A}$と$\textrm{B}$共に$\displaystyle\frac{2}{5}$に増加し、問題となっている土地の価値が2期と3期で$\textrm{A}$と$\textrm{A}$共に2に増加したとすると、$\textrm{A}$が得られると期待できる価値の3期分の合計は、3期すべてで交渉が妥結した場合$\displaystyle\frac{\boxed{ス}}{70}$となり、1期目に紛争が起きた場合$\displaystyle\frac{\boxed{セ}}{70}$であり、2期目に紛争が起きた場合$\displaystyle\frac{\boxed{ソ}}{70}$となる。

2023慶應義塾大学総合政策学部過去問
投稿日:2023.12.07

<関連動画>

茨城大 漸化式ぐらい自由に解かせてくれ

アイキャッチ画像
単元: #数列#学校別大学入試過去問解説(数学)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023茨城大学過去問題
一般項$a_{n}$を求めよ
$3a_{n}=S_{n}+n^2-2n+1$
$S_n=\displaystyle\sum_{k=1}^{n}a_{k}$
この動画を見る 

横浜市立大(医)

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$iz^2+2iz+\displaystyle \frac{1}{2}+i=0$を解け

出典:2000年横浜市立大学 過去問
この動画を見る 

大学入試問題#461「どう処理すべきか」 関西大学(2009) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#関西大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{e^{-2x}}{1+e^{-x}} dx$

出典:2009年関西大学 入試問題
この動画を見る 

慶應の入試に国語がない本当の理由【慶應国文学卒あ〜るさん】

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: Morite2 English Channel
問題文全文(内容文):
慶應文学部国文学専攻卒のあ~るさんとの対談動画です。

慶應義塾大学の入試問題に、国語がない理由について語り合います。

この動画を見る 

大学入試問題#773「綺麗な良問」 青山学院大学(2019) #整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: ますただ
問題文全文(内容文):
素数$p.q$および自然数$n$に対し
$\displaystyle \frac{1}{p}+\displaystyle \frac{1}{q}+\displaystyle \frac{1}{pq}=\displaystyle \frac{1}{n}$
が成り立つような$(p,q,n)$の組をすべて求めよ

出典:2019年青山学院大学
この動画を見る 
PAGE TOP