問題文全文(内容文):
$\Large{\boxed{4}}$ $p$,$q$を正の実数とし、Oを原点とする座標空間内に3点A(3,$-\sqrt 3$,0),B(3,$\sqrt 3$,0),C($p$,0,$q$)をとる。ただし、四面体OABCは1辺の長さが$2\sqrt 3$の正四面体であるとする。
(1)$p$および$q$の値を求めよ。
以下、点$\displaystyle\left(\frac{3}{2},0,\frac{q}{2}\right)$に関してO,A,B,Cと対称な点を、それぞれD,E,F,Gとする。
(2)直線DGと平面ABCとの交点Hの座標を求めよ。
(3)直線CBと平面DEGとの交点をI、直線CAと平面DFGとの交点をJとする。
四角形CJHIの面積$S$と四角錐G-CJHIの体積$V$を、それぞれ求めよ。
$\Large{\boxed{4}}$ $p$,$q$を正の実数とし、Oを原点とする座標空間内に3点A(3,$-\sqrt 3$,0),B(3,$\sqrt 3$,0),C($p$,0,$q$)をとる。ただし、四面体OABCは1辺の長さが$2\sqrt 3$の正四面体であるとする。
(1)$p$および$q$の値を求めよ。
以下、点$\displaystyle\left(\frac{3}{2},0,\frac{q}{2}\right)$に関してO,A,B,Cと対称な点を、それぞれD,E,F,Gとする。
(2)直線DGと平面ABCとの交点Hの座標を求めよ。
(3)直線CBと平面DEGとの交点をI、直線CAと平面DFGとの交点をJとする。
四角形CJHIの面積$S$と四角錐G-CJHIの体積$V$を、それぞれ求めよ。
単元:
#大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ $p$,$q$を正の実数とし、Oを原点とする座標空間内に3点A(3,$-\sqrt 3$,0),B(3,$\sqrt 3$,0),C($p$,0,$q$)をとる。ただし、四面体OABCは1辺の長さが$2\sqrt 3$の正四面体であるとする。
(1)$p$および$q$の値を求めよ。
以下、点$\displaystyle\left(\frac{3}{2},0,\frac{q}{2}\right)$に関してO,A,B,Cと対称な点を、それぞれD,E,F,Gとする。
(2)直線DGと平面ABCとの交点Hの座標を求めよ。
(3)直線CBと平面DEGとの交点をI、直線CAと平面DFGとの交点をJとする。
四角形CJHIの面積$S$と四角錐G-CJHIの体積$V$を、それぞれ求めよ。
$\Large{\boxed{4}}$ $p$,$q$を正の実数とし、Oを原点とする座標空間内に3点A(3,$-\sqrt 3$,0),B(3,$\sqrt 3$,0),C($p$,0,$q$)をとる。ただし、四面体OABCは1辺の長さが$2\sqrt 3$の正四面体であるとする。
(1)$p$および$q$の値を求めよ。
以下、点$\displaystyle\left(\frac{3}{2},0,\frac{q}{2}\right)$に関してO,A,B,Cと対称な点を、それぞれD,E,F,Gとする。
(2)直線DGと平面ABCとの交点Hの座標を求めよ。
(3)直線CBと平面DEGとの交点をI、直線CAと平面DFGとの交点をJとする。
四角形CJHIの面積$S$と四角錐G-CJHIの体積$V$を、それぞれ求めよ。
投稿日:2024.07.01