福田の数学〜京都大学2022年文系第2問〜条件を満たす経路の総数と漸化式 - 質問解決D.B.(データベース)

福田の数学〜京都大学2022年文系第2問〜条件を満たす経路の総数と漸化式

問題文全文(内容文):
下図(※動画参照)の三角柱ABC-DEFにおいて、Aを始点として、辺に沿って
頂点をn回移動する。すなわち、この移動経路
$P_0 \to P_1 \to P_2 \to \ldots \to P_{n-1} \to P_n$ (ただし$P_0=A$)
において、$P_0P_1,P_1P_2,\ldots,P_{n-1}P_n$は全て辺であるとする。
また、同じ頂点を何度通ってよいものとする。このような移動経路で、終点$P_n$がA,B,Cの
いずれかとなるものの総数$a_n$を求めよ。

2022京都大学文系過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
下図(※動画参照)の三角柱ABC-DEFにおいて、Aを始点として、辺に沿って
頂点をn回移動する。すなわち、この移動経路
$P_0 \to P_1 \to P_2 \to \ldots \to P_{n-1} \to P_n$ (ただし$P_0=A$)
において、$P_0P_1,P_1P_2,\ldots,P_{n-1}P_n$は全て辺であるとする。
また、同じ頂点を何度通ってよいものとする。このような移動経路で、終点$P_n$がA,B,Cの
いずれかとなるものの総数$a_n$を求めよ。

2022京都大学文系過去問
投稿日:2022.03.22

<関連動画>

福田の一夜漬け数学〜数列・階差数列と部分分数分解〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の数列の一般項を求めよ。
$2,4,7,13,24,42,69,107,158,\cdots$

次の和を求めよ。
(1)$\displaystyle \sum_{k=1}^n\frac{1}{4k^2-1}$
(2)$\displaystyle \sum_{k=1}^n\frac{1}{k^2+2k}$
(3)$\displaystyle \sum_{k=1}^n\frac{1}{k(k+1)(k+2)}$
この動画を見る 

福田の数学〜東京理科大学2023年創域理工学部第1問(3)〜偶奇で定義の異なる漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)数列$\left\{a_n\right\}$は、$a_1$=$\displaystyle\frac{7}{5}$, $n$が偶数の時は$a_{n+1}$=$\displaystyle\frac{1+a_n}{2}$, $n$が奇数の時は$a_{n+1}$=$\displaystyle\frac{2+a_n}{2}$を満たすとする。このとき、$a_2$=$\frac{\boxed{\ \ ヘホ\ \ }}{\boxed{\ \ マミ\ \ }}$, $a_3$=$\frac{\boxed{\ \ ムメ\ \ }}{\boxed{\ \ モヤ\ \ }}$である。
さらに、自然数$k$に対して$a_{2k+1}$=$\boxed{\ \ ユ\ \ }$+$\frac{\boxed{\ \ ヨ\ \ }}{\boxed{\ \ ラ\ \ }}a_{2k-1}$となる。これを
$a_{2k+1}$-$\frac{\boxed{\ \ リ\ \ }}{\boxed{\ \ ル\ \ }}$=$\frac{\boxed{\ \ レ\ \ }}{\boxed{\ \ ロ\ \ }}\left( a_{2k-1}-\frac{\boxed{\ \ リ\ \ }}{\boxed{\ \ ル\ \ }} \right)$
と変形することにより、
$a_{2k-1}$=$\frac{1}{\boxed{\ \ ワヲ\ \ }}\left( \frac{\boxed{\ \ レ\ \ }}{\boxed{\ \ ロ\ \ }} \right)^{k-1}$+$\frac{\boxed{\ \ リ\ \ }}{\boxed{\ \ ル\ \ }}$
が得られる。また、
$a_{2k}$=$\frac{1}{\boxed{\ \ ンあ\ \ }}\left( \frac{\boxed{\ \ い\ \ }}{\boxed{\ \ う\ \ }} \right)^{k-1}$+$\frac{\boxed{\ \ え\ \ }}{\boxed{\ \ お\ \ }}$
も得られる。
この動画を見る 

福田の数学〜早稲田大学2024年理工学部第2問〜重複順列と連立漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $n$を自然数とし、数1, 2, 4を重複を許して$n$個並べてできる$n$桁の自然数全体を考える。そのうちで3の倍数となるものの個数を$a_n$、3で割ると1余るものの個数を$b_n$、3で割ると2余るものの個数を$c_n$とする。
(1)$a_{n+1}$を$b_n$, $c_n$を用いて表せ。同様に$b_{n+1}$を$a_n$, $c_n$を用いて、$c_{n+1}$を$a_n$, $b_n$を用いて表せ。
(2)$a_{n+2}$を$n$と$c_n$を用いて表せ。
(3)$a_{n+6}$を$n$と$a_n$を用いて表せ。
(4)$a_{6m+1} (m=0,1,2,...)$を$m$を用いて表せ。
この動画を見る 

千葉大 漸化式 良問再投稿

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=\displaystyle \frac{(1+\sqrt{ 3 })^n+(1-\sqrt{ 3 })^n}{4}(n \geqq 2)$

以下を求めよ
$a_n$は整数
$a_n$は3で割ると余りが2

出典:2013年千葉大学 過去問
この動画を見る 

世界のナベアツを数学的に見てみた…

アイキャッチ画像
単元: #数列#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
世界のナベアツを数学的に見てみた...
この動画を見る 
PAGE TOP