関西大 フェルマーの小定理の証明 - 質問解決D.B.(データベース)

関西大 フェルマーの小定理の証明

問題文全文(内容文):
Pは素数であり,m,kを自然数とする.
(1)${}_m \mathrm{ C }_0+{}_m \mathrm{ C }_1+{}_m \mathrm{ C }_2+・・・{}_m \mathrm{ C }_m-1+{}_m \mathrm{ C }_m$の値を求めよ.
(2)$1\leqq k\leqq P-1$のとき${}_P \mathrm{ C }_k$はPの倍数である.
(3)$2^P-2$はPの倍数である.

関西大過去問
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
Pは素数であり,m,kを自然数とする.
(1)${}_m \mathrm{ C }_0+{}_m \mathrm{ C }_1+{}_m \mathrm{ C }_2+・・・{}_m \mathrm{ C }_m-1+{}_m \mathrm{ C }_m$の値を求めよ.
(2)$1\leqq k\leqq P-1$のとき${}_P \mathrm{ C }_k$はPの倍数である.
(3)$2^P-2$はPの倍数である.

関西大過去問
投稿日:2022.12.22

<関連動画>

福田の数学〜一橋大学2022年文系第3問〜同値関係の証明と不等式の表す領域

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#一次不等式(不等式・絶対値のある方程式・不等式)#図形と方程式#恒等式・等式・不等式の証明#軌跡と領域#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の問いに答えよ。
(1)実数x,yについて、$「|x-y| \leqq x+y」$であることの必要十分条件は
「$x \geqq 0$かつ$y \geqq 0$ 」であることを示せ。
(2)次の不等式で定まるxy平面上の領域を図示せよ。
$|1+y-2x^2-y^2| \leqq 1-y-y^2$

2022一橋大学文系過去問
この動画を見る 

北海道大 対数 不等式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$f(t)=log_{2}t+log_{t}4$の最小値は?

(2)
$k$ $log_{2}t \lt (log_{2}t)^2-log_{2}t+2$が成り立つ$k$の範囲は?

出典:北海道大学 過去問
この動画を見る 

00東京都教員採用試験(数学:3番 整式の割り算)

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$ $x^9-3x^8$を$x^2+x+1$で割った余りを求めよ.
この動画を見る 

【数Ⅱ】【式と証明】整式の割り算3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x^2+1$で割ると余りが$2x+3$ であり、
$x^2+x+1$で割ると余りが$3x+5$である3次式を求めよ。
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型理系第4問Part2〜不等式の証明と近似値計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#積分とその応用#定積分#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ $e$を自然対数の底とする。$e$=2.718...である。
(1)0≦$x$≦1において不等式1+$x$≦$e^x$≦1+2$x$が成り立つことを示せ。
(2)$n$を自然数とするとき、0≦$x$≦1において不等式
$\displaystyle\sum_{k=0}^n\frac{x^k}{k!}$≦$e^x$≦$\displaystyle\sum_{k=0}^n\frac{x^k}{k!}+\frac{x^n}{n!}$
が成り立つことを示せ。
(3)0≦$x$≦1を定義域とする関数$f(x)$を
$f(x)$=$\left\{\begin{array}{1}
1 (x=0)\\
\displaystyle\frac{e^x-1}{x} (0<x≦1)
\end{array}\right.$
と定義する。(2)の不等式を利用して、定積分$\displaystyle\int_0^1f(x)dx$ の近似値を小数第3位まで求め、求めた近似値と真の値との誤差が$10^{-3}$以下である理由を説明せよ。
この動画を見る 
PAGE TOP