一橋大 整数問題 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

一橋大 整数問題 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
'98一橋大学過去問題
すべての自然数nに対して$5^n+an+b$が16の倍数となるような
16以下の自然数a,bを求めよ。
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学的帰納法#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
'98一橋大学過去問題
すべての自然数nに対して$5^n+an+b$が16の倍数となるような
16以下の自然数a,bを求めよ。
投稿日:2018.06.26

<関連動画>

福田の数学〜東京大学2025理系第4問〜関数の値が平方数となる条件

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

この問いでは、

$0$以上の整数の$2$乗になる数を平方数と呼ぶ。

$a$を正の整数とし、

$f_a (x) = x^2+x-a$とおく。

(1)$n$を正の整数とする。

$f_a(n)$は平方数ならば、$n\leqq a$であることを示せ。

(2)$f_a (n)$が平方数となる正の整数$n$の個数を

$N_a$とおく。

次の条件$(i),(ii)$が同値であることを示せ。

$(i)\quad N_a=1$である。

$(ii)\quad 4a+1$は素数である。

$2025$年東京大学理系過去問題
この動画を見る 

中学レベル 倍数の見分け方の証明

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z$は1~9の整数である.
$XX+YY+ZZ=XYZ$
これを解け.
この動画を見る 

ガウス記号・漸化式・合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$[(7+\sqrt{41}^{2021}]$を$2^{2021}$で割った余りを求めよ.
この動画を見る 

Math Video: How To Solve Congruent Expressions Most Easily

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学 合同式を英語で解説
この動画を見る 

素数が連続して出現しない区間はどれくらい?素数砂漠のお話

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
素数が連続して出現しない区間がどのくらいか解説します.
この動画を見る 
PAGE TOP