福田の数学〜名古屋大学2025文系第1問〜放物線が囲む部分の面積 - 質問解決D.B.(データベース)

福田の数学〜名古屋大学2025文系第1問〜放物線が囲む部分の面積

問題文全文(内容文):

$\boxed{1}$

実数$b,c$に対し、

放物線$y=f(x)=x^2+bx+c$が

$2$点$(p,0),(q,0)$を通ると仮定する(ただし$p\gt q$)。

また、条件$0\lt t \leqq 1$を満たす実数$t$に対し

実数$r,s$を次のように定める。

$r=\dfrac{1+t}{2}p+\dfrac{1-t}{2}q,s=\dfrac{1-t}{2}p+\dfrac{1+t}{2}q$

以下の問いに答えよ。

(1)$q-s,r-p,s+r,s-r$のそれぞれを

$b,c,t$で用いて表せ。

(2)$sr$および$s^2+r^2$を$b,c,t$を用いて表せ。

(3)放物線$y=f(x)$、直線$x=r,x=s$および

$x$軸が囲む領域の面積を$b,c,t$を用いて表せ。

$2025$年名古屋大学文系過去問題
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

実数$b,c$に対し、

放物線$y=f(x)=x^2+bx+c$が

$2$点$(p,0),(q,0)$を通ると仮定する(ただし$p\gt q$)。

また、条件$0\lt t \leqq 1$を満たす実数$t$に対し

実数$r,s$を次のように定める。

$r=\dfrac{1+t}{2}p+\dfrac{1-t}{2}q,s=\dfrac{1-t}{2}p+\dfrac{1+t}{2}q$

以下の問いに答えよ。

(1)$q-s,r-p,s+r,s-r$のそれぞれを

$b,c,t$で用いて表せ。

(2)$sr$および$s^2+r^2$を$b,c,t$を用いて表せ。

(3)放物線$y=f(x)$、直線$x=r,x=s$および

$x$軸が囲む領域の面積を$b,c,t$を用いて表せ。

$2025$年名古屋大学文系過去問題
投稿日:2025.05.18

<関連動画>

【高校数学】微分1.5~例題・微分係数と極限~ 6-2【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) $f(x)=x^2$の$x=2$における微分係数を求めよ。

(2) $\displaystyle \lim_{ x \to 3 }$$(x^2-2x+4)$

(3) $\displaystyle \lim_{ x \to -3 }$$\frac{x^2-9}{x+3}$

(4) $\displaystyle \lim_{ x \to 3 }$$\frac{2x}{x-5}$

(5) $\displaystyle \lim_{ x \to 0 }$$\frac{1}{x}$$(\frac{1}{x-1}+1)$
この動画を見る 

福田の数学〜部分積分と極限のコンボ〜明治大学2023年全学部統一Ⅲ第2問〜部分積分と極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#積分とその応用#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ $t$>0 に対して、次の2つの定積分を考える。
$I$=$\displaystyle\int_0^{\frac{\pi}{2}}e^{-tx}\sin xdx$, $J$=$\displaystyle\int_0^{\frac{\pi}{2}}e^{-tx}\cos xdx$
部分積分を用いれば$I$=$\boxed{\ \ ア\ \ }$-$tJ$, $J$=$\boxed{\ \ イ\ \ }$+$tI$ が成り立つことが分かるので、
$I$=$\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$, $J$=$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ エ\ \ }}$
を得る。したがって、$\displaystyle\lim_{t \to \infty}\frac{\log\boxed{\ \ エ\ \ }}{t}$=0 を用いれば、
$\displaystyle\lim_{t \to \infty}\frac{1}{t}\log\left(\displaystyle\int_0^{\frac{\pi}{2}}e^{-tx}\cos xdx-\frac{t}{\boxed{\ \ エ\ \ }}\right)$=$\boxed{\ \ カ\ \ }$
となる。
$\boxed{\ \ ア\ \ }$、$\boxed{\ \ イ\ \ }$、$\boxed{\ \ ウ\ \ }$の解答群
⓪-1 ①1 ②2-$\pi$ ③$\pi$ ④1-$t$ ⑤1+$t$ 
⑥1-$t^2$ ⑦1+$t^2$ ⑧$-e^{-\frac{\pi}{2}t}$ ⑨$e^{-\frac{\pi}{2}t}$ 
$\boxed{\ \ ウ\ \ }$、$\boxed{\ \ オ\ \ }$の解答群
⓪$t$ ①1 ②-1$-te^{-\frac{\pi}{2}t}$ ③-1$+te^{-\frac{\pi}{2}t}$ ④1$-te^{-\frac{\pi}{2}t}$ 
⑤1$+te^{-\frac{\pi}{2}t}$ ⑥-$t$-$e^{-\frac{\pi}{2}t}$ ⑦-$t$+$e^{-\frac{\pi}{2}t}$ ⑧$t$-$e^{-\frac{\pi}{2}t}$ ⑨$t$+$e^{-\frac{\pi}{2}t}$
$\boxed{\ \ カ\ \ }$の解答群
⓪0 ①$-\frac{\pi}{2}$ ②$-\frac{\pi}{3}$ ③$-\frac{\pi}{4}$ ④$-\frac{\pi}{6}$ ⑤$-\frac{\pi}{12}$ ⑥$\frac{\pi}{6}$ 
⑦$\frac{\pi}{4}$ ⑧$\frac{\pi}{3}$ ⑨$\frac{\pi}{2}$ 
この動画を見る 

学習院大 整式の剰余 積の微分公式証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#学習院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^n-1$を$(x-1)^2$で割った余りを求めよ

出典:学習院大学 過去問
この動画を見る 

【上手に文字を置ける?】多項式の割り算の入試問題【流通科学大学】【数学】

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
整式$f(x)=x^3+ax^2+bx+c$を$(x+1)^2$で割ると余りが$2x+7$であり、
$x-1$で割ると余りが$17$である。
このときの、$a,b,c$の値は?

流通科学大過去問
この動画を見る 

【数Ⅱ】【微分法と積分法】放物線と直線で囲まれた図形の面積 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の曲線と直線で囲まれた図形の面積Sを求めよ。
(1) $y=x^2-4x-2,x$軸
(2) $y=x^2+x,y=1-x$
(3) $y=|x^2-x-2|,y=x+1$
この動画を見る 
PAGE TOP