「二次関数の最大最小①」全パターン【高校数学ⅠA】を宇宙一わかりやすく - 質問解決D.B.(データベース)

「二次関数の最大最小①」全パターン【高校数学ⅠA】を宇宙一わかりやすく

問題文全文(内容文):
次の問いに答えよ。
(1)関数$f(x)=2x^2-4x+c(-1 \leqq x \leqq 4)$の最大値が$7$となるような$c$の値を求めよ。
(2)関数$f(x)=ax^2-2ax+b(-1 \leqq x \leqq 2)$の最大値が$5$、最小値が$1$となるような$a,b$の値を求めよ。

2次関数$f(x)=x^2+2ax+2a-1(-2 \leqq x \leqq 3)$について、$a$の値が変化するときの最小値を$m(a)$とするとき、$m(a)$の最大値を求めよ。
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)関数$f(x)=2x^2-4x+c(-1 \leqq x \leqq 4)$の最大値が$7$となるような$c$の値を求めよ。
(2)関数$f(x)=ax^2-2ax+b(-1 \leqq x \leqq 2)$の最大値が$5$、最小値が$1$となるような$a,b$の値を求めよ。

2次関数$f(x)=x^2+2ax+2a-1(-2 \leqq x \leqq 3)$について、$a$の値が変化するときの最小値を$m(a)$とするとき、$m(a)$の最大値を求めよ。
投稿日:2020.11.14

<関連動画>

福田の数学〜慶應義塾大学2024年商学部第2問(4)〜領域と集合の要素の個数

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (4)$xy$平面上で、不等式$x$≦5 の表す領域を$A$, 不等式$x$+$y$≧10 の表す領域を$B$とする。また、$xy$平面上の点の集合$S$は以下の3つの条件をすべて満たす。
(条件1)$S$に含まれるどの点も、その$x$座標と$y$座標はともに1以上10以下の自然数である。
(条件2)$S$の要素で領域$A$に含まれるものは、領域$B$に含まれる。
(条件3)$S$の要素で領域$B$に含まれるものは、領域$A$に含まれる。
$S$を、条件1~3を満たす中で要素の個数が最大のものとするとき、その要素の個数は$\boxed{シス}$である。
この動画を見る 

【短時間でポイントチェック!!】内接円や外接円の三角形の面積〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
※図は動画内参照
①Aは?
②CDは?
③四角形ABCDの面積は?

※図は動画内参照
①$\cos A$
②△ABCの面積$S$
③△ABCの内接円の半径$r$
この動画を見る 

【高校数学】三角比④~90°- θ,180° - θ考え方,イメージ~ 3-4【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
△ABCの3つの内角$\angle A$、$\angle B$、$\angle C$の大きさをそれぞれA、B、Cとするとき、
次の等式が成り立つことを証明せよ。

sin$\displaystyle \frac{A}{2}$=cos$\displaystyle \frac{B+C}{2}$
この動画を見る 

【高校数学】余弦定理の応用~問題演習~ 3-7.5【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 

福田のわかった数学〜高校1年生060〜三角形の形状決定問題(1)

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$三角形の形状決定(1)
次の等式が成り立つとき、$\triangle ABC$はどんな三角形か。

$a^2+b^2+c^2=bc(\frac{1}{2}+\cos A)+ca(\frac{1}{2}+\cos B)+ab(\frac{1}{2}+\cos C)$
この動画を見る 
PAGE TOP