19奈良県教員採用試験(数学:2番 三角関数) - 質問解決D.B.(データベース)

19奈良県教員採用試験(数学:2番 三角関数)

問題文全文(内容文):
2⃣$0 \leqq θ \leqq \pi$
$y= sin2θ + 2(sinθ+cosθ)-i$のMAX、minとそのときのθの値を求めよ。
単元: #数Ⅱ#三角関数#三角関数とグラフ#接線と増減表・最大値・最小値#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
2⃣$0 \leqq θ \leqq \pi$
$y= sin2θ + 2(sinθ+cosθ)-i$のMAX、minとそのときのθの値を求めよ。
投稿日:2020.10.07

<関連動画>

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[1]。三角関数の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#センター試験・共通テスト関連#学校別大学入試過去問解説(数学)#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$[1](1)次の問題Aについて考えよう。
問題A 関数$y=\sin\theta+\sqrt3\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})$の最大値を求めよ。

$\sin\frac{\pi}{\boxed{ア}}=\frac{\sqrt3}{2}, \cos\frac{\pi}{\boxed{ア}}=\frac{1}{2}$ であるから、三角関数の合成により
$y=\boxed{イ}\sin(\theta+\frac{\pi}{\boxed{ア}})$
と変形できる。よって、yは$\theta=\frac{\pi}{\boxed{ウ}}$で最大値$\boxed{エ}$をとる。

(2)pを定数とし、次の問題Bについて考えよう。
問題B 関数$y=\sin\theta+p\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})$の最大値を求めよ。
$(\textrm{i})p=0$のとき、yは$\theta=\frac{\pi}{\boxed{オ}}$で最大値$\boxed{カ}$をとる。

$(\textrm{ii})p \gt 0$のときは、加法定理$\cos(\theta-\alpha)=\cos\theta\cos\alpha+\sin\theta\sin\alpha$を用いると
$y=\sin\theta+p\cos\theta=\sqrt{\boxed{キ}}\cos(\theta-\alpha)$

と表すことができる。ただし$\alphaは\sin\alpha=\frac{\boxed{ク}}{\sqrt{\boxed{キ}}}, \cos\alpha=\frac{\boxed{ケ}}{\sqrt{\boxed{キ}}}, 0 \lt \alpha \lt \frac{\pi}{2}$

を満たすものとする。このとき、yは$\theta=\boxed{コ}$で最大値$\sqrt{\boxed{サ}}$をとる。

$(\textrm{iii})p \lt 0$のとき、$y$は$\theta=\boxed{シ}$で最大値$\sqrt{\boxed{ス}}$をとる。

$\boxed{キ}~\boxed{ケ}、\boxed{サ}、\boxed{ス}$の解答群
⓪-1   ①1   ②-p   ③p   \\
④1-p   ⑤1+p   ⑥-p^2   ⑦p^2   ⑧1-p^2   \\
⑨1+p^2   ⓐ(1-p)^2   ⓑ(1+p^2)   \\

$\boxed{コ}、\boxed{シ}$の解答群
⓪$0$    ①$\alpha$    ②$\frac{\pi}{2}$

2021共通テスト数学過去問
この動画を見る 

【数Ⅱ】三角比と三角関数の違い【弧度法・グラフ・加法定理の3つだけ。加法定理は証明もしよう】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
三角比と三角関数の違いに関して解説していきます.
この動画を見る 

【高校数学】三角関数4.5~例題で学ぶグラフのかき方~ 4-6【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
次のグラフをかけ。(丸付けは動画を参照してください)
(1) y=$\displaystyle \frac{1}{2}$cosθ

(2) y=cos(θ-$\displaystyle \frac{π}{6}$)

(3) y=cos4θ

(4) y=sin$\displaystyle \frac{θ}{2}$

(5) y=tan$\displaystyle \frac{θ}{4}$
この動画を見る 

福田の一夜漬け数学〜絶対不等式(2)〜受験編

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#図形と方程式#三角関数#軌跡と領域#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)任意の$\theta$に対して、$-2 \leqq x\cos\theta+y\sin\theta \leqq y+1$ が成立するような
点(x,y)の全体からなる領域をxy平面上に図示し、その面積を求めよ。

(2)任意の角$\alpha,\beta$に対して、$-1 \leqq x^2\cos\alpha+y\sin\beta \leqq 1$が成立するような
点(x,y)の全体からなる領域をxy平面上に図示し、その面積を求めよ。
この動画を見る 

【誘導あり:概要欄】大学入試問題#131 浜松医科大学(2020) 三角比

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
(1)
$x \gt 0$のとき
$x \gt \sin\ x$を示せ

(2)
$\displaystyle \frac{1}{6} \lt \sin10^{ \circ } \lt \displaystyle \frac{\pi}{18}$を示せ

出典:2020年浜松医科大学 入試問題
この動画を見る 
PAGE TOP