福田の数学〜慶應義塾大学2021年総合政策学部第2問〜見込む角の最大 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年総合政策学部第2問〜見込む角の最大

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} サッカー選手Pは下図(※動画参照)のようにペナルティーエリアの左端の線を延長した線\\
のゴール寄り右3mをドリブルで敵陣にまっすぐ向かっている。Pがゴールに向かって\\
シュートするとき、Pから見てゴールの見える範囲が大きい方が得策である。すなわち、\\
下図(※動画参照)のような配置でh=3mのとき、選手Pが蹴り込める角度範囲である\theta\\
が最も大きくなるPのゴールラインからの距離xを求めたい。ただし、ゴールは下図のように\\
ペナルティーエリアの左右の中央で、ゴールラインの外側に設置されているものとする。\\
一般に図(※動画参照)のようにペナルティーエリアの左端からゴールの左端までの距離をa、\\
ペナルティーエリアの左端からゴールの右端までの距離をb、Pのドリブルのラインと\\
ペナルティーエリアの左端までの距離をh(ただし、h \lt aとする)、Pからゴールライン\\
をx、Pの正面から右のゴールポストまでの角度を\alpha、Pの正面から左のゴールポスト\\
までの角を\betaとしたとき、次頁の解放の文章を完成させなさい。\\
\\
(解法)\tan\thetaを最も大きくするxを求める問題と考えることができる。\\
\tan\theta=\tan\boxed{\ \ ア\ \ }=\frac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}=\frac{\boxed{\ \ ア\ \ }×x}{x^2+\boxed{\ \ ウ\ \ }}\\
\tan\thetaの逆数を考えると、相加相乗平均の定理より\\
\frac{1}{\tan\theta}=\frac{x}{\boxed{\ \ エ\ \ }}+\frac{\boxed{\ \ オ\ \ }}{x×\boxed{\ \ カ\ \ }} \geqq \frac{2}{\boxed{\ \ キ\ \ }}\sqrt{\boxed{\ \ ク\ \ }}\\
であり、\frac{1}{\tan\theta}が最小、すなわち\tan\thetaが最大となるのはx=\sqrt{\boxed{\ \ ケ\ \ }}のときである。\\
\\
(解法終わり)\\
ペナルティエリアの横幅を40m、ゴールの横幅を8mとすると、今回のサッカー選手Pの場合、\\
x=\sqrt{\boxed{\ \ コ\ \ }}mのときに、\thetaが最も大きくなることが分かる。
\end{eqnarray}
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} サッカー選手Pは下図(※動画参照)のようにペナルティーエリアの左端の線を延長した線\\
のゴール寄り右3mをドリブルで敵陣にまっすぐ向かっている。Pがゴールに向かって\\
シュートするとき、Pから見てゴールの見える範囲が大きい方が得策である。すなわち、\\
下図(※動画参照)のような配置でh=3mのとき、選手Pが蹴り込める角度範囲である\theta\\
が最も大きくなるPのゴールラインからの距離xを求めたい。ただし、ゴールは下図のように\\
ペナルティーエリアの左右の中央で、ゴールラインの外側に設置されているものとする。\\
一般に図(※動画参照)のようにペナルティーエリアの左端からゴールの左端までの距離をa、\\
ペナルティーエリアの左端からゴールの右端までの距離をb、Pのドリブルのラインと\\
ペナルティーエリアの左端までの距離をh(ただし、h \lt aとする)、Pからゴールライン\\
をx、Pの正面から右のゴールポストまでの角度を\alpha、Pの正面から左のゴールポスト\\
までの角を\betaとしたとき、次頁の解放の文章を完成させなさい。\\
\\
(解法)\tan\thetaを最も大きくするxを求める問題と考えることができる。\\
\tan\theta=\tan\boxed{\ \ ア\ \ }=\frac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}=\frac{\boxed{\ \ ア\ \ }×x}{x^2+\boxed{\ \ ウ\ \ }}\\
\tan\thetaの逆数を考えると、相加相乗平均の定理より\\
\frac{1}{\tan\theta}=\frac{x}{\boxed{\ \ エ\ \ }}+\frac{\boxed{\ \ オ\ \ }}{x×\boxed{\ \ カ\ \ }} \geqq \frac{2}{\boxed{\ \ キ\ \ }}\sqrt{\boxed{\ \ ク\ \ }}\\
であり、\frac{1}{\tan\theta}が最小、すなわち\tan\thetaが最大となるのはx=\sqrt{\boxed{\ \ ケ\ \ }}のときである。\\
\\
(解法終わり)\\
ペナルティエリアの横幅を40m、ゴールの横幅を8mとすると、今回のサッカー選手Pの場合、\\
x=\sqrt{\boxed{\ \ コ\ \ }}mのときに、\thetaが最も大きくなることが分かる。
\end{eqnarray}
投稿日:2021.07.17

<関連動画>

これ知ってる?ある公式を知ってれば一瞬で解ける問題! #Shorts

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ tan30°=tan 10°・tan50°・tan70°$を示せ。
この動画を見る 

福田のわかった数学〜高校2年生086〜三角関数(25)重要な変形(3)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(25) 重要な変形(3)\\
外接円の半径が1の\triangle ABCがある。\\
この三角形の内接円の半径は\frac{1}{2}以下であることを示せ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校2年生084〜三角関数(23)重要な変形(1)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(23) 重要な変形(1)\\
\triangle ABCにおいて\\
\sin2A+\sin2B+\sin2C=4\sin A\sin B\sin C\\
を証明せよ。
\end{eqnarray}
この動画を見る 

【短時間でポイントチェック!!】半角の公式〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$\frac{\pi}{2}<\theta<\pi$で$\sin\theta=\frac{1}{3}$のとき$\cos\frac{\theta}{2}$は?
この動画を見る 

福田のわかった数学〜高校2年生078〜三角関数(17)2直線のなす角(1)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(17) なす角(1)\\
2直線y=3x-1, y=-2x+4\\
のなす角\theta(0 \lt \theta \lt \frac{\pi}{2})を求めよ。
\end{eqnarray}
この動画を見る 
PAGE TOP