2021一橋大 素数の個数 - 質問解決D.B.(データベース)

2021一橋大 素数の個数

問題文全文(内容文):
$1000$以下の素数は$250$個以下であることを示せ.

2021一橋大過去問
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1000$以下の素数は$250$個以下であることを示せ.

2021一橋大過去問
投稿日:2021.08.26

<関連動画>

うまい方法

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#解と判別式・解と係数の関係#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^3+2x^2+3x+4=0$の3つの解を$ \alpha,\beta,\delta $とする.
$(\alpha^4-1)(\beta^4-1)(\delta^4-1)$の値を求めよ.
この動画を見る 

07和歌山県教員採用試験(数学:4番 複素数)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$z_0=2$
$z=\displaystyle \frac{1}{2}(\cos\displaystyle \frac{\pi}{3}+i\ \sin\displaystyle \frac{\pi}{3})$
$z_n=z\ z_{n-1}$
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n|z_{k+1}-z_k|$を求めよ。

出典:和歌山県教員採用試験
この動画を見る 

複素関数論⑬ 高専数学*4(複素積分の極限)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#微分法と積分法#複素数#平均変化率・極限・導関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$k\gt 0$,$C_k:z=(k-t)+it$であり,
$0\leqq t\leqq k$とするとき,以下を解け.

(1)$\vert z\vert \geqq \dfrac{k}{\sqrt2},\left\vert\dfrac{e^{iz}}{z}\right\vert \leqq \dfrac{\sqrt2 e^{-t}}{k}$

(2)$\displaystyle \lim_{k\to\infty} \displaystyle \int_{c_k}^{} \dfrac{e^{iz}}{z} dz=0$
この動画を見る 

神戸大 3次方程式の基本問題

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#複素数と方程式#複素数平面#一次不等式(不等式・絶対値のある方程式・不等式)#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c$は整数である。
$x^3+ax^2+bx+c=0$は$\alpha=\dfrac{3+\sqrt{7}i}{2}$と0以上1以下の解をもつ(a,b,c)をすべて求めよ.

神戸大過去問
この動画を見る 

【高校数学】数Ⅲ-4 複素数の絶対値・2点間の距離②

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\alpha=3+(2x-1)i,\beta=x+2-i$とする.
2点$A(\alpha),B(\beta)$と原点$O$が一直線上に
あるとき,実数$x$の値を求めよ.

②$z$を複素数とするとき,$\vert z \vert = \vert \overline{z} \vert = \vert -z \vert$を証明せよ.
この動画を見る 
PAGE TOP