大学入試問題#108 弘前大学(2018) 定積分 - 質問解決D.B.(データベース)

大学入試問題#108 弘前大学(2018) 定積分

問題文全文(内容文):
$a \gt 0$
$\displaystyle \int_{0}^{1}\displaystyle \frac{dx}{(e^{2x}+a)(e^{-2x}+a)}\ $を計算せよ。

出典:2018年弘前大学 入試問題
チャプター:

06:09~解答のみを掲載

単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a \gt 0$
$\displaystyle \int_{0}^{1}\displaystyle \frac{dx}{(e^{2x}+a)(e^{-2x}+a)}\ $を計算せよ。

出典:2018年弘前大学 入試問題
投稿日:2022.02.04

<関連動画>

大学入試問題#629「計算ミスだけ注意」 横浜国立大学後期(2023) #積分方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x \gt 0$
$f(x)=(log\ x)^2-\displaystyle \int_{1}^{e} f(t) dt$のとき
$f(x)$を求めよ

出典:2023年横浜国立大学 入試問題
この動画を見る 

大学入試問題#219 京都大学? (2016) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a_n=\displaystyle \int_{\sqrt{ 3 }}^{2\sqrt{ 2 }}\displaystyle \frac{x^{2n-1}}{\sqrt{ x^2+1 }}\ dx$
$a_1,\ a_2$を求めよ。

出典:2016年京都大学 入試問題
この動画を見る 

大学入試問題#68 京都大学(2012) 部分積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{\sqrt{ 3 }}\displaystyle \frac{log\sqrt{ 1+x^2 }}{x^2}\ dx$

出典:2012年京都大学 入試問題
この動画を見る 

大学入試問題#454「落とすと落ちる問題①」 横浜国立大学 後期 2003 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{3}} \displaystyle \frac{dx}{\sin\ x+\sqrt{ 3 }\ \cos\ x}$

出典:2003年横浜国立大学 入試問題
この動画を見る 

大学入試問題#389「基本問題」 #茨城大学(2009) #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} x\ \cos(x+\displaystyle \frac{\pi}{3})\ dx$

出典:2009年茨城大学 入試問題
この動画を見る 
PAGE TOP