問題文全文(内容文):
2次方程式$x^2-4x+1=0$の2つの実数解のうち大きいものを$\alpha$,小さいものを$\beta$とす る。$n=1,2,3,...$に対し、$s_n=\alpha^n+\beta^n$とおく。
(1)$s_1,s_2,s_3$を求めよ。ま た、$n\geqq 3$に対し、$s_n$を$s_{n-1}$と$s_{n-2}$で表そう。
(2)$\beta^3$以下の最大の整数を求め よ。
(3)$\alpha^{2003}$以下の最大の整数の1の位の数を求めよ。
2次方程式$x^2-4x+1=0$の2つの実数解のうち大きいものを$\alpha$,小さいものを$\beta$とす る。$n=1,2,3,...$に対し、$s_n=\alpha^n+\beta^n$とおく。
(1)$s_1,s_2,s_3$を求めよ。ま た、$n\geqq 3$に対し、$s_n$を$s_{n-1}$と$s_{n-2}$で表そう。
(2)$\beta^3$以下の最大の整数を求め よ。
(3)$\alpha^{2003}$以下の最大の整数の1の位の数を求めよ。
チャプター:
0:00 オープニング
0:05 問題文
0:20 問題解説(1):数学的帰納法の類題
1:52 問題解説(1)別解:α^n倍、β^n倍
3:10 問題解説(2):βの範囲がわかれば
4:06 問題解説(3):規則性に注目
5:40 名言
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
2次方程式$x^2-4x+1=0$の2つの実数解のうち大きいものを$\alpha$,小さいものを$\beta$とす る。$n=1,2,3,...$に対し、$s_n=\alpha^n+\beta^n$とおく。
(1)$s_1,s_2,s_3$を求めよ。ま た、$n\geqq 3$に対し、$s_n$を$s_{n-1}$と$s_{n-2}$で表そう。
(2)$\beta^3$以下の最大の整数を求め よ。
(3)$\alpha^{2003}$以下の最大の整数の1の位の数を求めよ。
2次方程式$x^2-4x+1=0$の2つの実数解のうち大きいものを$\alpha$,小さいものを$\beta$とす る。$n=1,2,3,...$に対し、$s_n=\alpha^n+\beta^n$とおく。
(1)$s_1,s_2,s_3$を求めよ。ま た、$n\geqq 3$に対し、$s_n$を$s_{n-1}$と$s_{n-2}$で表そう。
(2)$\beta^3$以下の最大の整数を求め よ。
(3)$\alpha^{2003}$以下の最大の整数の1の位の数を求めよ。
投稿日:2021.06.24