【数A】整数の性質:東京大学(理系)2003年 第4問 - 質問解決D.B.(データベース)

【数A】整数の性質:東京大学(理系)2003年 第4問

問題文全文(内容文):
2次方程式$x^2-4x+1=0$の2つの実数解のうち大きいものを$\alpha$,小さいものを$\beta$とす る。$n=1,2,3,...$に対し、$s_n=\alpha^n+\beta^n$とおく。
(1)$s_1,s_2,s_3$を求めよ。ま た、$n\geqq 3$に対し、$s_n$を$s_{n-1}$と$s_{n-2}$で表そう。
(2)$\beta^3$以下の最大の整数を求め よ。
(3)$\alpha^{2003}$以下の最大の整数の1の位の数を求めよ。
チャプター:

0:00 オープニング
0:05 問題文
0:20 問題解説(1):数学的帰納法の類題
1:52 問題解説(1)別解:α^n倍、β^n倍
3:10 問題解説(2):βの範囲がわかれば
4:06 問題解説(3):規則性に注目
5:40 名言

単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次方程式$x^2-4x+1=0$の2つの実数解のうち大きいものを$\alpha$,小さいものを$\beta$とす る。$n=1,2,3,...$に対し、$s_n=\alpha^n+\beta^n$とおく。
(1)$s_1,s_2,s_3$を求めよ。ま た、$n\geqq 3$に対し、$s_n$を$s_{n-1}$と$s_{n-2}$で表そう。
(2)$\beta^3$以下の最大の整数を求め よ。
(3)$\alpha^{2003}$以下の最大の整数の1の位の数を求めよ。
投稿日:2021.06.24

<関連動画>

整数問題基本

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数$m,n$をすべて求めよ.
$m^4+n^4-2mn=13$
この動画を見る 

【数A】整数の性質:φ関数(φ210とφ1050))

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
φ(210)とφ(1050)を求めよ
この動画を見る 

大阪大 整数(素数)問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'04大阪大学過去問題
p,q素数(p>2q)
$a_n=P^n-4(-q)^n$  n自然数
(1)$a_1$と$a_2$が1より大きい公約数mをもつならばm=3であることを示せ
(2)$a_n$が全て3の倍数であるようなp,qのうち積pqが最小となるものを求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2023年理工学部第5問(2)〜不定方程式の整数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ (2)$f(x)$=$x-$$\displaystyle\frac{1}{x}$とする。自然数$a$,$b$,$c$の組で$a$≦$b$≦$c$かつ$f(a)$+$f(b)$+$f(c)$が自然数であるものの総数は$\boxed{\ \ ト\ \ }$個である。その中で$f(a)$+$f(b)$+$f(c)$の値が最大になるのは($a$,$b$,$c$)=$\boxed{\ \ ナ\ \ }$のときである。
この動画を見る 

福田の数学〜早稲田大学2022年社会科学部第3問〜整式の割り算の余りの問題

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
整式$P(x)$を$x-1$で割ると1余り、$(x+1)^2$で割ると$3x+2$余る。
このとき、次の問いに答えよ。
(1)$P(x)$を$x+1$で割った時の余りを求めよ。
(2)$P(x)$を$(x-1)(x+1)$で割った時の余りを求めよ。
(3)$P(x)$を$(x-1)(x+1)^2$で割った時の余りを求めよ。

2022早稲田大学社会科学部過去問
この動画を見る 
PAGE TOP