式の値 2通りの解説 函館ラ・サールB - 質問解決D.B.(データベース)

式の値 2通りの解説 函館ラ・サールB

問題文全文(内容文):
$a^2+3ab-18b^2=0(a>0,b>0)$

函館ラ・サール高等学校
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$a^2+3ab-18b^2=0(a>0,b>0)$

函館ラ・サール高等学校
投稿日:2021.05.10

<関連動画>

最後まで油断するなよ因数分解

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$2(x^2-1)-6x^2+6$
この動画を見る 

【高校受験対策/数学】死守77

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守77

①$-3+(-2)$を計算しなさい。

➁$8-4÷(-2)^2$を計算しなさい。

③$5×(-5a)$を計算しなさい。

④$\frac{1}{2}x^2y÷\frac{1}{4}xy$を計算しなさい。

⑤$\sqrt{48}-\sqrt{3}$を計算しなさい。

⑥$(2a-b)^2$を展開しなさい。

⑦$x^2-x-42$を因数分解しなさい。

⑧半径が$6cm$で中心角が$45°$のおうぎ形の面積を求めなさい。
ただし、円周率は$\pi$とする。

⑨解が$-5,1$の2つの数となる、$x$についての2次方程式を1つ作りなさい。

⑩次のア~エのうち、数の集合と四則との関係について述べた文として正しいものをすべて選び、記号で答えなさい。

ア 自然数と自然数の加法の結果は、いつでも自然数となる。
イ 自然数と自然数の減法の結果は、いつでも整数となる。
ウ 自然数と自然数の乗法の結果は、いつでも自然数となる。
エ 自然数と自然数の除法の結果は、いつでも整数となる。
この動画を見る 

mathematical formula : Shirotan's cute kawaii math show #Math #exam #questions #brainteasers #study

単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$(x+y)^2 = \frac{51+10 \sqrt{2}}{5}$
$x-y= \frac{1-5\sqrt{2}}{\sqrt{5}}$のとき$4xyの値を求めなさい。$
この動画を見る 

【数学】中3-12 式の計算の利用② 代入編

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
式を①____してから代入しよう!!
②$x=12$のとき、$x^2-14x+49$は?
③$x=7,y=-\displaystyle \frac{1}{3}$のとき、$(4x-3y)^2-2x(8x-6y)$は?
④$x=3.6,y=0.3$のとき、$x^2-4y^2$は?
⑤$x=-\displaystyle \frac{1}{3},y=\displaystyle \frac{1}{2}$のとき、$(x+2y)^2-x(-2y+x)$は?
⑥$x-y=5,xy=-2$のとき、$x^2+y^2$は?
⑦$x+y=-3,xy=4$のとき、$x^2+xy+y^2$は?
この動画を見る 

【高校受験対策/数学】死守82

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#資料の活用#1次関数#文字と式#平面図形#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守82

①$3-(-6)$を計算しなさい。

②$9÷(-\frac{1}{5})+4$を計算しなさい。

③$\sqrt{28}-\sqrt{7}$を計算しなさい。

④下の図のように、半径が$9cm$、中心角が$60°$のおうぎ形$OAB$があります。
このおうぎ形の弧$AB$の長さを求めなさい。
ただし円周率は$\pi$を用いなさい。

⑤右の表は、A中学校の3年生男子80人の立ち幅とびの記録を度数分布表にまと めたものです。
度数が最も多い階級の相対度数を求めなさい。

⑥関数$y=3x$のグラフに平行で、 点$(0,2)$を通る直線の式を求めなさい。

⑦右の図の四角形$ABCD$において、点$B$と点$Dが$重なるように折ったときにできる折り目の線と
辺$AB$、$BC$との交点をそれぞれ$P,Q$とします。
2点$P,Q$を定規とコンパスを使って作図しなさい。
ただし、点を示す記号$P,Q$をかき入れ、作図に用いた線は消さないこと。
この動画を見る 
PAGE TOP