気付けば一瞬!!式の値 受験生よ。努力が実ることを証明せよ。 - 質問解決D.B.(データベース)

気付けば一瞬!!式の値 受験生よ。努力が実ることを証明せよ。

問題文全文(内容文):
$x+\frac{1}{x}=99$のとき
$\frac{2x^2+102x+2}{100x}$の値は?
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 数学を数楽に
問題文全文(内容文):
$x+\frac{1}{x}=99$のとき
$\frac{2x^2+102x+2}{100x}$の値は?
投稿日:2024.02.10

<関連動画>

【高校受験対策/数学】死守83

アイキャッチ画像
単元: #数学(中学生)#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#平方根#2次方程式#比例・反比例#空間図形#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守83

①$-1-5$を計算しなさい。

②$(-3)^2+4×(-2)$を計算しなさい。

③$10xy^2÷ (-5y)×3x$を計算しなさい。

④$2x-y-\frac{5x+y}{3}$を計算しなさい。

⑤$(\sqrt{5}+3)(\sqrt{5}-2)$を計算しなさい。

⑥次の方程式を解きなさい。
$x^2=9x$

⑦$l=2\pi r$を$r$について解きなさい。

⑧正$n$角形の1つの内角が$140°$であるとき、$n$の値を求めなさい。

⑨$y$は$x$に比例し、$x=-3$のとき、$y=18$である。
$x=\frac{1}{2}$のときの$y$の値を求めなさい。

➉空間内の平面について述べた文として適切でないものを、次のア~エの中から1つ選びその記号を書きなさい。

ア 一直線上にある3点をふくむ平面は1つに決まる。
イ 交わる2直線をふくむ平面は1つに決まる。
ウ 平行な2直線をふくむ平面は1つに決まる。
エ 1つの直線とその直線上にない1点をふくむ平面は1つに決まる。
この動画を見る 

【6分でマスター!!】単項式と多項式の次数の求め方を解説!(係数と定数項についても)〔現役塾講師解説、数学〕

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
単項式と多項式の次数の求め方について解説します。
この動画を見る 

【数学】中2-1 単項式と多項式

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数や文字の①____だけでできている式を②____っていって、②の③____の形
で表された式を④____っていうんだ。
②で、かけあわせている文字の個数をその式の⑤____という!!

◎右上のⒶ~Ⓕについて答えよう!!

⑥単項式はどれ?
⑦多項式はどれ?
⑧Cの項と係数は?
項→
係→

Ⓐ$3x^2-5x+2$
Ⓑ$-12xy$
Ⓒ$\displaystyle \frac{a}{4}-ab^2+3$
Ⓓ$7$
Ⓔ$\displaystyle \frac{3}{2}x^2y$
Ⓕ$ab^cd$

Ⓐの$3x^2$の次数は⑨____で、
$-5X$の次数は⑩____で、
$+2$の次数は⑪____だから、Ⓐは⑫____次式。
そして、Ⓑは⑬____次式で、Ⓒは⑭____ 次式で、
Ⓓは⑮____次式で、Ⓔは⑯____は 次式で
Ⓕは⑰____次式だね!!
この動画を見る 

分母の有理化のタイミング 桃山学院

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#平方根
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{41}{\sqrt{42}}-(\frac{\sqrt{6}}{\sqrt{7}}-\frac{\sqrt{7}}{\sqrt{6}})$
この動画を見る 

【高校受験対策/数学】死守59

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#平方根#比例・反比例#空間図形#確率#文字と式#平面図形#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策/数学 死守59

①$-5 \times 3$を計算しなさい。

②$9-6^2$を計算しなさい。

③$\sqrt{14}\times\sqrt{7}-\sqrt{8}$を計算しなさい。

④$x=1$、$y=-2$のとき、$3x(x+2y)+y(x+2y)$の値を求めなさい。

⑤絶対値が$4$である数をすべて書きなさい。

⑥$y$は$x$に比例し、$x=2$のとき$y=-6$となります。
$x=-3$のとき $y$の値を求めなさい。

⑦右の図のように、2種類のマーク(♥、◆)のカードが4枚あります。
この4枚のカードのうち、3枚のカードを1枚ずつ左から右に並べるとき、
異なるマークのカードが交互になる並べ方は何通りあるか求めなさい。

⑧右の図のような正三角錐OABCがあります。
辺ABとねじれの位置にある辺はどれですか、書きなさい。

⑨右の資料は、A市における各日の最高気温を1週間記録したものです。 中央値を求めなさい。

➉右の図のような$△ABC$があります。AC上に点Pを、$\angle PBC=30°$となるようにとります。
点Pを定規とコンパス を使って作図しなさい。
ただし点を示す記号Pをかき入れ、作図に用いた線 は消さないこと。
この動画を見る 
PAGE TOP