早稲田(商) 小問の難問 - 質問解決D.B.(データベース)

早稲田(商) 小問の難問

問題文全文(内容文):
$n$は自然数である.
$n\leqq (5+2\sqrt5)^{2019}\lt n+1$,$n$を$100$で割った余りを求めよ.

2019早稲田(商)過去問
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$n\leqq (5+2\sqrt5)^{2019}\lt n+1$,$n$を$100$で割った余りを求めよ.

2019早稲田(商)過去問
投稿日:2020.05.12

<関連動画>

福田のわかった数学〜高校3年生理系097〜不等式の証明(4)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(4)
$(x+2)\log(x+1) \geqq 2x (x \geqq 0)$を証明せよ。
この動画を見る 

福田のわかった数学〜高校3年生理系094〜不等式の証明(1)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(1)
$\cos x \lt 1-\frac{x^2}{2}+\frac{x^4}{24} (x \gt 0)$を証明せよ。
この動画を見る 

福田のおもしろ数学328〜多項式の性質を繰り返し用いて多項式を求める

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理
指導講師: 福田次郎
問題文全文(内容文):
実数係数の多項式$P(x)$が任意の実数$\theta$に対して$P(\cos \theta +\sin \theta)=P(\cos \theta -\sin \theta)$を満たすとき、$P(x)=a_0+a_1 (1-x^2)^2+a_2 (1-x^2)^4 +\cdots+a_n (1-x^2)^{2n}$であることを証明して下さい。($a_0 ,a_1 ,\cdots ,a_n$は実数、$n$は0以上の整数)
この動画を見る 

大学入試問題#103 東海大学医学部(2017) 二項定理

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: ますただ
問題文全文(内容文):
次の和を求めよ。
(1)
${}_{ n }C_0+{}_{ n }C_1+・・・+{}_{ n }C_n$

(2)
$\displaystyle \frac{1}{1!(2n)!}+\displaystyle \frac{1}{2(2n-1)!}+・・・+\displaystyle \frac{1}{n!(n+1)!}$

出典:2017年東海大学医学部 入試問題
この動画を見る 

【数Ⅱ】【式と証明】展開式の係数 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式の展開式における、[ ]内に指定された項の係数を求めよ。
(1) (2x²-1)⁶ [x⁶]  (2)(2x³-3x)⁵ [x⁹]

次の式の展開式における、[ ]内に指定された項の係数を求めよ。
(1) (a+b+c)⁶ [ab²c³]  (2)(x+y-3z)⁸ [x⁵yz²]

次の式の展開式における、[ ]内のものを求めよ。
(1) (x²+1/x)⁷ [x²の項の係数]  (2)(2x³-1/3x²)⁵ [定数項]   

次の式の展開式における、[ ]内に指定された項の係数を求めよ。
(1) (x+y+z)⁶ [x²yz³]
(2) (x+2y+3z)⁶ [x³y²z]
(3) (2x-3y+z)⁷ [x²y²z³]
(4) (x+y-3z)⁸ [x⁵z³]
この動画を見る 
PAGE TOP