【数ⅢC】複素数平面の基本⑨垂直二等分線を考える - 質問解決D.B.(データベース)

【数ⅢC】複素数平面の基本⑨垂直二等分線を考える

問題文全文(内容文):
複素数平面における垂直二等分線を考えていきます.
チャプター:

0:00 オープニング
0:04 解説
1:20 エンディング

単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数平面における垂直二等分線を考えていきます.
投稿日:2023.03.03

<関連動画>

大学入試問題#594「やばいのは見た目だけ」 東京帝国大学(1926) #複素数

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$\sqrt[ 3 ]{ i }$を求めよ。
$(i^2=-1)$

出典:1926年東京帝国大学医学部 入試問題
この動画を見る 

福田の一夜漬け数学〜数学III 複素数平面〜ド・モアブルの定理(3)

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
①$z^4=-8+8\sqrt3i$ を解け。
②$z=\displaystyle \frac{\sqrt3}{2}+\displaystyle \frac{1}{2}i$ のとき、$(1+\sqrt3i)z^n+2i=0$
を満たす最小の自然数$n$を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2022年薬学部第1問(1)〜複素数の計算とド・モアブルの定理

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)整数a,bは等式$(a+bi)^3=-16+16i$を満たす。ただし、iは虚数単位とする。
$(\textrm{i})a=\boxed{\ \ ア\ \ }, b=\boxed{\ \ イ\ \ }$である。
$(\textrm{ii})\frac{i}{a+bi}-\frac{1+5i}{4}$を計算すると$\boxed{\ \ ウ\ \ }$である。

2022慶應義塾大学薬学部過去問
この動画を見る 

【数ⅢC】 複素数平面の基本⑪図形の方程式を条件から考える

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点zが原点Oを中心とする半径2の円上を動くとき、$w=\dfrac{z-2}{z+1}$はどのような図形を描くか
この動画を見る 

鹿児島(医)慶應(理) 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#複素数平面#集合と命題(集合・命題と条件・背理法)#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#鹿児島大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
鹿児島大学過去問題・類慶応義塾大学
二つの整数の平方の和で表される数
全体からなる集合をA
・x,yが集合Aの要素であるとき、積xyも集合Aの要素であることを証明せよ
・5および$5^5$は集合Aの要素であることを示せ
この動画を見る 
PAGE TOP