【3分で好きになる!】連立方程式:近畿大学附属高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【3分で好きになる!】連立方程式:近畿大学附属高等学校~全国入試問題解法

問題文全文(内容文):
入試問題 近畿大学附属高等学校

aの値を求めよ。
【連立方程式】
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x + y = 5a-13 \\
3x - 2y = -2a+1
\end{array}
\right.
\end{eqnarray}$
の解は、$y$が$x$の$2$倍になっている。

単元: #数学(中学生)#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 近畿大学附属高等学校

aの値を求めよ。
【連立方程式】
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x + y = 5a-13 \\
3x - 2y = -2a+1
\end{array}
\right.
\end{eqnarray}$
の解は、$y$が$x$の$2$倍になっている。

投稿日:2022.05.19

<関連動画>

【中2 P.53】連立方程式の計算特訓②

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の計算をしなさい.

2.
$\boxed{1}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=3(y-1)+4 \\
x+5y=9
\end{array}
\right.
\end{eqnarray}$

$\boxed{2}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x-6y=16 \\
\dfrac{x}{4}+\dfrac{y}{3}=\dfrac{1}{6}
\end{array}
\right.
\end{eqnarray}$


$\boxed{3}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
0.4x-0.7y=1.1 \\
x+2y=14
\end{array}
\right.
\end{eqnarray}$

$\boxed{4}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{2x+y}{5}=2 \\
0.6x-0.2y=1
\end{array}
\right.
\end{eqnarray}$

$\boxed{5}$
$2x+5y=4y+7=4x+13y$
この動画を見る 

佐賀県立高校入試2021年2⃣連立方程式

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#佐賀県立高校
指導講師: 重吉
問題文全文(内容文):
佐賀県立高校入試2021年2⃣連立方程式
-----------------
A中学校とB中学校の合計45人のバレーボール部員が、3日間の合同練習をすることになった。
練習場所の近くには山と海があり、最終日のレクリエーションの時間にどちらに行きたいか希望調査をしたところ、動画内の表のような結果になった。
ただし、山または海の希望は、45人の部員全員がどちらか一方だけを希望したものとする。

(ア)
2校のバレーボール部員の人数をそれぞれ求めるために、A中学校バレーボール部員の人数を$x$人、B中学校バレーボール部員の人数を$y$人として、あとのような連立方程式をつくった。
このとき、①にあてはまる式と②にあてはまる方程式を、$x,y$を用いてそれぞれ表しなさい。
$\begin{eqnarray}
\left\{
\begin{array}{l}
① = 45 \\

\end{array}
\right.
\end{eqnarray}$

(イ)
A中学校バレーボール部員の人数と、B中学校バレーボール部員の人数をそれぞれ求めなさい。
この動画を見る 

【数学】中2-18 ややこしい連立方程式①

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の連立方程式を求めよう.

①$\begin{eqnarray}
\left\{
\begin{array}{l}
3(x+y)=4x-7 \\
2x=3y+8
\end{array}
\right.
\end{eqnarray}$

②$\begin{eqnarray}
\left\{
\begin{array}{l}
0.5x-0.2y=2 \\
2x-3y=-3
\end{array}
\right.
\end{eqnarray}$

③$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{x}{3}+\dfrac{y}{4}=-1 \\
3y=-5x-9
\end{array}
\right.
\end{eqnarray}$

④$\begin{eqnarray}
\left\{
\begin{array}{l}
2(3x+y)=8x+y+9 \\
5x-4y+30=0
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

【高校受験対策/数学】死守58

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式#比例・反比例#空間図形#1次関数#文字と式#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守58 @397

①$5-8$を計算せよ

②$-4 \times(-3)^2$を計算せよ。

③$(4a^2b+6ab^2)\div 2ab$を計算せよ。

④$(x+y)^2-5xy$を計算せよ。

⑤絶対値が$4$より小さい整数は何個あるか。

⑥2次方程式$x^2+5x+2=0$を解け。

⑦$y$が$x$に反比例し、$x$と$y$の値が下の表のように対応しているとき、表のAに当てはまる数を求めよ。

⑧図1は円すいの展開図で、底面の半径は$5cm$、側面のおうぎ形の半径は$12cm$である。
$\angle x$の大きさを求めなさい。

⑨一の位の数が0でない、2桁の自然数Aがある。
Aの十の位の数とーの位の数を入れかえてできる数をBとする。
Aの十の位の数は一の位の数の2倍であり、BはAより36小さい。このときAの値を求めよ。

⑩右の表はある市における、7月の日ごとの最高気温を度数分布表にまとめたものである。
この表から読み取ることができることがらとして適切なものを、次のア~オからすべて選べ。

ア $32.0℃$以上$34.0℃$未満の階緑の相対度数は$0.16$よりきい。
イ 階級の幅は$12.0℃$である。
ウ 最高気温が$28.0℃$以上の日は、$5$日である。
エ 最頻値(モード)は、$27.0℃$である。
オ $30.0℃$以上$32.0℃$未満の階級の階級値は、$30.0℃$である。
この動画を見る 

【中学数学】連立方程式の文章題の解き方【中2夏期講習③】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)ある動物園の入館料は大人2人と中学生3人では3100円、大人1人と中学生4人では2800円である。大人1人と中学生1人の入館料をそれぞれ求めよ。
(2)大小2つの整数がある。大きい方の整数は小さい方の整数の4倍より2小さく、大きい方の整数の2倍から小さい方の整数の7倍を引くと1になるという。このような2つの整数を求めよ。
(3)A君の家から学校へ行く途中に公園がある。A君が家から公園まで毎分80 m、公園から家まで毎分60 mで歩くと16分かかる。妹が家から公園まで毎分60 m、公園から学校まで毎分40 mで歩くと23分かかる。家から公園までと公園から家までの道のりを求めよ。
(4)2桁の整数がある。この整数の10の位の数と1の位の数の和は8になる。また、この数の10の位と1の位を入れ替えてできる整数はもとの整数よりも36大きくなる。もとの2けたの整数を求めよ。
この動画を見る 
PAGE TOP