【数Ⅱ】【三角関数】加法定理の応用4 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【三角関数】加法定理の応用4 ※問題文は概要欄

問題文全文(内容文):
0≦x<2π のとき、次の不等式を解け。
(1)cos2x<sinx
(2)cos2x≧cos² x
(3)cosx+sin2x>0
チャプター:

0:00 オープニング
0:06 問題文
0:15 (1)解説
1:39 (2)解説
2:53 (3)解説

単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
0≦x<2π のとき、次の不等式を解け。
(1)cos2x<sinx
(2)cos2x≧cos² x
(3)cosx+sin2x>0
投稿日:2025.03.13

<関連動画>

京都府立医・長崎大 三角関数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#京都府立医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
京都府立医科大学
$sinx+sin2x+sin3x=cosx+cos2x$
$+cos3x$を解け

長崎大学過去問題
$0 \leqq x \leqq \pi$
cos2x+4asinx+a-2=0
相異2実根をもつaの範囲
この動画を見る 

福田のわかった数学〜高校2年生085〜三角関数(24)重要な変形(2)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(24) 重要な変形(2)
$\triangle ABC$において
$\cos A+\cos B+\cos C=1+4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$
を証明せよ。 
この動画を見る 

福田の数学〜明治大学2021年理工学部第1問(2)〜三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)座標平面上に2点$A(\frac{5}{8},0),\ B(0,\frac{3}{2})$をとる。Lは原点を通る直線で、Lが
x軸の正の方向となす角$\thetaは0 \leqq \theta \leqq \frac{\pi}{2}$の範囲にあるとする。ただし、角$\theta$の
符号は時計の針の回転と逆の向きを正の方向とする。点Aと直線Lとの距離を
$d_A$、点Bと直線Lの距離を$d_B$とおく。このとき、

$d_A+d_B=\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}\sin\theta+\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\cos\theta$
である。$\theta$が$0 \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき、
$d_A+d_B$の最大値は$\frac{\boxed{\ \ シス\ \ }}{\boxed{\ \ セ\ \ }}$であり、
最小値は$\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}$である。

2021明治大学理工学部過去問
この動画を見る 

【高校数学】 数Ⅱ-120 三角関数の合成③

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$0 \leqq x \lt 2π$のとき、次の不等式を解こう。

①$\sin x-\sqrt{ 3 } \cos x \gt -1 $

②$\sqrt{ 3 } \sin x - \cos x \leqq \sqrt{ 2 }$
この動画を見る 

福田の数学〜杏林大学2022年医学部第1問〜三角関数の最大最小と極値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#加法定理とその応用#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学
指導講師: 福田次郎
問題文全文(内容文):
(1)三角関数について、次の等式が成り立つ。
$\cos2θ=\boxed{アイ}\sin^2θ+\boxed{ウ}$
$\sin3θ=\boxed{エオ}\sin^3θ+\boxed{カ}\sinθ$
(2)$0 \leqq θ \lt 2\pi$のとき、関数
$y=-\frac{1}{12}\sin3θ+\frac{3}{8}\cos2θ-\frac{3}{4}\sinθ$
は$θ=\frac{\boxed{キ}}{\boxed{ク}}\pi$で最小値$\frac{\boxed{ケコサ}}{\boxed{シス}}$をとり、
$\sinθ=\frac{\boxed{セソ}}{\boxed{タ}}$のとき最大値$\frac{\boxed{チツ}}{\boxed{テト}}$
をとる。また、yの極致を与えるθの個数は$\boxed{ナ}$である。

2022杏林大学医学部過去問
この動画を見る 
PAGE TOP