4次方程式 要工夫 - 質問解決D.B.(データベース)

4次方程式 要工夫

問題文全文(内容文):
x423x2=x3+3
これを解け.
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
x423x2=x3+3
これを解け.
投稿日:2022.06.23

<関連動画>

20年5月数学検定準1級1次試験(複素数)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
4
α=(1+i)(13i)

(1)|α|を求めよ.
(2)argαを求めよ.
0argα<2π

20年5月数学検定準1級1次試験(複素数)過去問
この動画を見る 

2021一橋大 素数の個数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1000以下の素数は250個以下であることを示せ.

2021一橋大過去問
この動画を見る 

【数Ⅱ】【複素数と方程式】剰余の定理と因数定理1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の有理数の範囲で因数分解せよ。
(1)4x3+x+1
(2)2x3x2+9
(3)3x3+8x21

次の式を因数分解せよ。
(1)x4+5x3+5x25x6
(2)x4+4x3x216x12

P(x)=x3+ax2+bx+cとする。P(x)x21で割り切れ、また、P(x)2で割ると余りが3である。このとき、定数a,b,cの値を求めよ。
この動画を見る 

産業医大 3次方程式と2次方程式の共通解

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#複素数と方程式#2次方程式と2次不等式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
Pは素数であり,qは整数である.
x32x2+xp=0,x2x+q=0が1つの共通解をもつ,p,qを求めよ.

1996産業医大過去問
この動画を見る 

学習院大 三次方程式と複素数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#学習院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'04学習院大学過去問題
a実数
f(x)=4x34ax2+(a2+3)x+a2+4a+7
(1)任意のaについてf(m)=0が成り立つ実数m
(2)f(x)=0の3つの解を複素数平面上に図示したとき、それらが正三角形になるようなaの値
この動画を見る 
PAGE TOP preload imagepreload image