【高校数学】数Ⅲ-118 関数の極値③ - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-118 関数の極値③

問題文全文(内容文):
数Ⅲ(関数の極値③)
Q.次の極値を求めなさい。

①$f(x)=x+ 2\cos x(0\leqq x\leqq \pi)$

➁$f(x)=\sin x(1+ \cos x)(0\leqq x\leqq 2\pi)$
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(関数の極値③)
Q.次の極値を求めなさい。

①$f(x)=x+ 2\cos x(0\leqq x\leqq \pi)$

➁$f(x)=\sin x(1+ \cos x)(0\leqq x\leqq 2\pi)$
投稿日:2018.11.14

<関連動画>

福田の数学〜中央大学2023年理工学部第4問〜関数方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 以下の問いに答えよ。
(1)整式$f(x)$=$a_nx^n$+$a_{n-1}x^{n-1}$+...+$a_1x$+$a_0$ ($a_0$≠0)に対し、
$f(x+1)$-$f(x)$=$b_nx^n$+$b_{n-1}x^{n-1}$+...+$b_1x$+$b_0$ ($a_0$≠0)
と表すとき、$b_n$と$b_{n-1}$を求めよ。
(2)整式$g(x)$が恒等式$g(x+1)$-$g(x)$=$(x-1)x(x+1)$および$g(0)$=0を満たすとき、$g(x)$を求めよ。
(3)整式$h(x)$が恒等式$h(2x+1)$-$h(2x)$=$h(x)$-$x^2$を満たすとき、$h(x)$を求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系064〜微分(9)定義に従った微分(1)

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
定義に従って$f(x)=x^n$を微分せよ.($n$は自然数)
この動画を見る 

横市(医)弘前大 因数分解・微分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#微分とその応用#微分法#色々な関数の導関数#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数Ⅲ#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
横浜市立大学過去問題
因数分解せよ
$a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2$

弘前大学過去問題
関数y=f(x)において
$\displaystyle\lim_{x \to a}\frac{x^2f(x)-a^2f(a)}{x^2-a^2}$をa,f(a),f'(a)を用いて表せ。
この動画を見る 

福田の数学〜慶應義塾大学2023年理工学部第1問(3)〜関数の増減と平均値の定理

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)閉区間[0,1]上で定義された連続関数$h(x)$が、開区間(0,1)で微分可能であり、この区間で常に$h'(x)$<0であるとする。このとき、$h(x)$が区間[0,1]で減少することを、平均値の定理を用いて証明しなさい。
この動画を見る 

東工大 y=e^x に引ける接線の数

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=e^x$に$(a,b)$から引ける接線の本数を求めよ

出典:1980年東京工業大学 過去問
この動画を見る 
PAGE TOP