【高校数学】数Ⅲ-118 関数の極値③ - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-118 関数の極値③

問題文全文(内容文):
数Ⅲ(関数の極値③)
Q.次の極値を求めなさい。

①$f(x)=x+ 2\cos x(0\leqq x\leqq \pi)$

➁$f(x)=\sin x(1+ \cos x)(0\leqq x\leqq 2\pi)$
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(関数の極値③)
Q.次の極値を求めなさい。

①$f(x)=x+ 2\cos x(0\leqq x\leqq \pi)$

➁$f(x)=\sin x(1+ \cos x)(0\leqq x\leqq 2\pi)$
投稿日:2018.11.14

<関連動画>

【意外と解けない?!?!】$y=3^{2x}$を微分せよ。

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#数Ⅲ
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
$y=3^{2x}$を微分せよ。
この動画を見る 

福田のわかった数学〜高校3年生理系065〜微分(10)定義に従った微分(2)log xの微分

アイキャッチ画像
単元: #微分とその応用#微分法#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
定義に従って$f(x)=\log x$を微分せよ.
この動画を見る 

福田の数学〜東北大学2023年理系第6問〜線分の通過範囲の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#接線と法線・平均値の定理#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ 関数$f(x)$=$-\frac{1}{2}x$$-\frac{4}{6x+1}$について、以下の問いに答えよ。
(1)曲線y=f(x)の接線で、傾きが1であり、かつ接点のx座標が正であるものの方程式を求めよ。
(2)座標平面上の2点P(x, f(x)), Q(x+1, f(x)+1)を考える。xが0≦x≦2の範囲を動くとき、線分PQが通過してできる図形Sの概形を描け。またSの面積を求めよ。

2023東北大学理系過去問
この動画を見る 

福田の数学〜複数の絶対値に対応できるか〜東京大学2018年文系第1問(1)〜絶対値を含む関数の最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標平面上に放物線 C を$y=x^2-3x+4$ で定め、領域Dを$y \geqq x^2-3x+4$で定める。原点を通る 2 直線l, m は C に接する。
(1) 放物線 C 上を動く点 A と直線l, m の距離をそれぞれL,M とする。$\sqrt{ \mathstrut L } + \sqrt{ \mathstrut M }$が最小値をとるときの点 A の座標を求めよ。

2018東京大学文過去問
この動画を見る 

福田の数学〜京都大学2023年理系第5問〜回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ Oを原点とするxyz空間において、点Pと点Qは次の3つの条件(a),(b),(c)を満たしている。
(a):点Pはx軸上にある。
(b):点Qはyz平面上にある。
(c):線分OPと線分OQの長さの和は1である。
点Pと点Qが条件(a),(b),(c)を満たしながらくまなく動くとき、線分PQが通過してできる立体の体積を求めよ。

2023京都大学理系過去問
この動画を見る 
PAGE TOP