福田の一夜漬け数学〜図形と方程式〜領域(6)直線の通過領域(基本)、高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜図形と方程式〜領域(6)直線の通過領域(基本)、高校2年生

問題文全文(内容文):
${\Large\boxed{1}}$ $m$が全ての実数を動くとき、直線$\ell:y=mx-m^2$
の通過する領域を図示せよ。
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $m$が全ての実数を動くとき、直線$\ell:y=mx-m^2$
の通過する領域を図示せよ。
投稿日:2018.09.03

<関連動画>

お茶の水女子大 解答に誤りがあるので、訂正版を出しました。素晴らしい別解をコメントくださった方がいるので公開はしておきます。

アイキャッチ画像
単元: #大学入試過去問(数学)#2次関数#複素数と方程式#2次関数とグラフ#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \neq 1$
$3(a-1)x^2+6x-a-2=0$は0と1の間に少なくとも1つの解をもつことを示せ

出典:お茶の水女子大学 過去問訂正版
この動画を見る 

福田の1.5倍速演習〜合格する重要問題033〜浜松医科大学2016年度理系第3問〜指数方程式の解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。なお、必要があれば以下の極限値の公式を用いてもよい。
$\lim_{x \to \infty}\frac{x}{e^x}=0$
(1)方程式$2^x=x^2 (x \gt 0)$の実数解の個数を求めよ。
(2)aを正の実数とし、xについての方程式$a^x=x^a (x \gt 0)$を考える。
$(\textrm{a})$方程式$a^x=x^a (x \gt 0)$の実数解の個数を求めよ。
$(\textrm{b})$方程式$a^x=x^a (x \gt 0)$でa,xがともに正の整数となるa,xの組$(a,x)$
をすべて求めよ。ただし$a \ne x$とする。

2016浜松医科大学理系過去問
この動画を見る 

弘前大 3倍角 5倍角 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#三角関数#加法定理とその応用#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$\sin 3x$を$\sin x$で表せ

(2)
$\sin x + \cos x=4\sin x \cos ^2x$を満たす$x$を求めよ


出典:1986年弘前大学 過去問
この動画を見る 

【高校数学】2次方程式②~判別式とは~数学界のDの意思を継ぐもの 2-8【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
2次方程式解説動画です
この動画を見る 

共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年2B第2問〜微分積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第2問}$
[1] $a$を実数とし、$f(x)=(x-a)(x-2)$とおく。また、$F(x)=\int_0^xf(t)dt$とする。

(1)$a=1$のとき、$F(x)はx=\boxed{\ \ ア\ \ }$で極小になる。

(2)$a=\boxed{\ \ イ\ \ }$のとき、$F(x)$は常に増加する。また、$F(0)=\boxed{\ \ ウ\ \ }$
であるから、$a=\boxed{\ \ イ\ \ }$のとき、$F(2)$の値は$\boxed{\boxed{\ \ エ\ \ }}$である。

$\boxed{\boxed{\ \ エ\ \ }}$の解答群
⓪0 ①正 ②負

(3)$a \gt \boxed{\ \ イ\ \ }$とする。
bを実数とし、$G(x)=\int_b^xf(t)dt$とおく。

関数$y=G(x)$のグラフは、$y=F(x)$のグラフを$\boxed{\boxed{\ \ オ\ \ }}$方向に
$\boxed{\boxed{\ \ カ\ \ }}$だけ平行移動したものと一致する。また、$G(x)はx=\boxed{\ \ キ\ \ }$
で極大になり、$x=\boxed{\ \ ク\ \ }$で極小になる。
$G(b)=\boxed{\ \ ケ\ \ }$であるから、$b=\boxed{\ \ キ\ \ }$のとき、曲線$y=G(x)$と
$x$軸との共有点の個数は$\boxed{\ \ コ\ \ }$個である。


$\boxed{\boxed{\ \ オ\ \ }}$の解答群
⓪$x$軸 ①$y$軸

$\boxed{\boxed{\ \ カ\ \ }}$の解答群
⓪$b$ ①$-b$ ②$F(b)$
③$-F(b)$ ④$F(-b)$ ⑤$-F(-b)$


[2] $g(x)=|x|(x+1)$とおく。

点$P(-1,0)$を通り、傾きが$c$の直線を$l$とする。$g'(-1)=\boxed{\ \ サ\ \ }$
であるから、$0 \lt c \lt \boxed{\ \ サ\ \ }$のとき、曲線$y=g(x)$と直線$l$は3点
で交わる。そのうちの1点は$P$であり、残りの2点を点$P$に近い方から順に
$Q,R$とすると、点$Q$の$x$座標は$\boxed{\ \ シス\ \ }$であり、点$R$の$x$座標は
$\boxed{\ \ セ\ \ }$である。

また、$0 \lt c \lt \boxed{\ \ サ\ \ }$のとき、線分$PQ$と曲線$y=g(x)$で囲まれた図形の
面積を$S$とし、線分$QR$と曲線$y=g(x)$で囲まれた図形の面積を$T$とすると
$S=\displaystyle \frac{\boxed{\ \ ソ\ \ }c^3+\boxed{\ \ タ\ \ }c^2-\boxed{\ \ チ\ \ }c+1}{\boxed{\ \ ツ\ \ }}$

$T=c^{\boxed{テ}}$
である。

2021共通テスト過去問
この動画を見る 
PAGE TOP