問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} P(0,0,-1),\ Q(0,1,-2),\ R(1,0,-2)を頂点とする三角形の面積は\boxed{\ \ ヘ\ \ }である。\\
aを実数とし、\overrightarrow{ v }=(a,a,3)とする。点P',Q',R'を\\
\overrightarrow{ OP' }=\overrightarrow{ OP }+\overrightarrow{ v },\ \overrightarrow{ OQ' }=\overrightarrow{ OQ }+\overrightarrow{ v },\ \overrightarrow{ OR' }=\overrightarrow{ OR }+\overrightarrow{ v }\\
によって定め、さらに線分PP',QQ',RR'がxy平面と交わる点をP'',Q'',R''とする。\\
このとき、P''の座標は\boxed{\ \ ホ\ \ }、Q''の座標は\boxed{\ \ マ\ \ }、R''の座標は\boxed{\ \ ミ\ \ }である。\\
\triangle P''Q''R''が正三角形になるのはa=\boxed{\ \ ム\ \ }のときである。\\
3点P'',Q'',R''が同一直線上にあるのはa=\boxed{\ \ メ\ \ }のときである。a \gt \boxed{\ \ メ\ \ }のとき、\\
\triangle P''Q''R''の面積をaで表すと\boxed{\ \ モ\ \ }となる。
\end{eqnarray}
2021慶應義塾大学看護医療学部過去問
\begin{eqnarray}
{\Large\boxed{4}} P(0,0,-1),\ Q(0,1,-2),\ R(1,0,-2)を頂点とする三角形の面積は\boxed{\ \ ヘ\ \ }である。\\
aを実数とし、\overrightarrow{ v }=(a,a,3)とする。点P',Q',R'を\\
\overrightarrow{ OP' }=\overrightarrow{ OP }+\overrightarrow{ v },\ \overrightarrow{ OQ' }=\overrightarrow{ OQ }+\overrightarrow{ v },\ \overrightarrow{ OR' }=\overrightarrow{ OR }+\overrightarrow{ v }\\
によって定め、さらに線分PP',QQ',RR'がxy平面と交わる点をP'',Q'',R''とする。\\
このとき、P''の座標は\boxed{\ \ ホ\ \ }、Q''の座標は\boxed{\ \ マ\ \ }、R''の座標は\boxed{\ \ ミ\ \ }である。\\
\triangle P''Q''R''が正三角形になるのはa=\boxed{\ \ ム\ \ }のときである。\\
3点P'',Q'',R''が同一直線上にあるのはa=\boxed{\ \ メ\ \ }のときである。a \gt \boxed{\ \ メ\ \ }のとき、\\
\triangle P''Q''R''の面積をaで表すと\boxed{\ \ モ\ \ }となる。
\end{eqnarray}
2021慶應義塾大学看護医療学部過去問
単元:
#大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} P(0,0,-1),\ Q(0,1,-2),\ R(1,0,-2)を頂点とする三角形の面積は\boxed{\ \ ヘ\ \ }である。\\
aを実数とし、\overrightarrow{ v }=(a,a,3)とする。点P',Q',R'を\\
\overrightarrow{ OP' }=\overrightarrow{ OP }+\overrightarrow{ v },\ \overrightarrow{ OQ' }=\overrightarrow{ OQ }+\overrightarrow{ v },\ \overrightarrow{ OR' }=\overrightarrow{ OR }+\overrightarrow{ v }\\
によって定め、さらに線分PP',QQ',RR'がxy平面と交わる点をP'',Q'',R''とする。\\
このとき、P''の座標は\boxed{\ \ ホ\ \ }、Q''の座標は\boxed{\ \ マ\ \ }、R''の座標は\boxed{\ \ ミ\ \ }である。\\
\triangle P''Q''R''が正三角形になるのはa=\boxed{\ \ ム\ \ }のときである。\\
3点P'',Q'',R''が同一直線上にあるのはa=\boxed{\ \ メ\ \ }のときである。a \gt \boxed{\ \ メ\ \ }のとき、\\
\triangle P''Q''R''の面積をaで表すと\boxed{\ \ モ\ \ }となる。
\end{eqnarray}
2021慶應義塾大学看護医療学部過去問
\begin{eqnarray}
{\Large\boxed{4}} P(0,0,-1),\ Q(0,1,-2),\ R(1,0,-2)を頂点とする三角形の面積は\boxed{\ \ ヘ\ \ }である。\\
aを実数とし、\overrightarrow{ v }=(a,a,3)とする。点P',Q',R'を\\
\overrightarrow{ OP' }=\overrightarrow{ OP }+\overrightarrow{ v },\ \overrightarrow{ OQ' }=\overrightarrow{ OQ }+\overrightarrow{ v },\ \overrightarrow{ OR' }=\overrightarrow{ OR }+\overrightarrow{ v }\\
によって定め、さらに線分PP',QQ',RR'がxy平面と交わる点をP'',Q'',R''とする。\\
このとき、P''の座標は\boxed{\ \ ホ\ \ }、Q''の座標は\boxed{\ \ マ\ \ }、R''の座標は\boxed{\ \ ミ\ \ }である。\\
\triangle P''Q''R''が正三角形になるのはa=\boxed{\ \ ム\ \ }のときである。\\
3点P'',Q'',R''が同一直線上にあるのはa=\boxed{\ \ メ\ \ }のときである。a \gt \boxed{\ \ メ\ \ }のとき、\\
\triangle P''Q''R''の面積をaで表すと\boxed{\ \ モ\ \ }となる。
\end{eqnarray}
2021慶應義塾大学看護医療学部過去問
投稿日:2021.08.10