【数C】【複素数平面】複素数と図形7 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数C】【複素数平面】複素数と図形7 ※問題文は概要欄

問題文全文(内容文):
原点を${\rm {O}}, \alpha=2-i,\beta=3+(2a-1)i$を表す点をそれぞれ$\rm A,B$とするとき、$\rm \angle AOB=\dfrac\pi4$を満たす実数$a$の値を求めよ。
チャプター:

0:00 オープニング
0:04 問題文確認
0:39 なぜ場合分けをするのか?
1:38 場合分けその1
3:45 場合分けその2
5:15 エンディング

単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
原点を${\rm {O}}, \alpha=2-i,\beta=3+(2a-1)i$を表す点をそれぞれ$\rm A,B$とするとき、$\rm \angle AOB=\dfrac\pi4$を満たす実数$a$の値を求めよ。
投稿日:2025.03.09

<関連動画>

福田の数学〜千葉大学2024年理系第4問(2)〜複素数平面乗の正三角形の頂点を求める

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数平面上の3点$\mathrm{P}(z), \mathrm{Q}(-1),\mathrm{R}(\sqrt3-1-i)$が正三角形をなすとき、複素数$z$を求めよ。
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第7問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#円と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{7}}\ i$を虚数単位とする。$\alpha=-1+i$とし、zは次の条件をともに満たす複素数とする。
条件1.$\frac{z-\alpha}{z-\bar{\alpha}}$の実部は0である。
条件2.zの虚部は0以上である。
このとき、複素数平面上でzがとりうる値全体の集合を表す図形Cと、実軸で
囲まれる部分の面積は$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\pi$である。
また、$w=\frac{iz}{z+1}$で表される点wがとりうる値全体の集合を表す図形と、
図形Cで囲まれる部分の面積は$\frac{\boxed{\ \ ウ\ \ }\ \pi+\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}$である。

2022早稲田大学人間科学部過去問
この動画を見る 

福田の数学〜東京慈恵会医科大学2022年医学部第4問〜複素数平面と図形

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#平面上の曲線#複素数平面#方べきの定理と2つの円の関係#図形と方程式#点と直線#2次曲線#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
複素数平面上の点zが原点を中心とする半径1の円周上を動くとき、$w=z+\frac{2}{z}$
で表される点wの描く図形をCとする。Cで囲まれた部分の内部(ただし、
境界線は含まない)に定点$\alpha$をとり、$\alpha$を通る直線lがCと交わる2点を$\beta_1,\beta_2$とする。
(1)$w=u+vi$(u,vは実数)とするとき、uとvの間に成り立つ関係式を求めよ。
(2)点$\alpha$を固定したままlを動かすとき、積$|\beta_1-\alpha|・|\beta_2-\alpha|$が最大となる
ようなlはどのような直線のときか調べよ。

2022東京慈恵会医科大学医学部過去問
この動画を見る 

福田の一夜漬け数学〜数学III 複素数平面〜|z|, arg zの範囲

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

${\Large\boxed{1}}$ 点$z$が、$|z+3-\sqrt3i|$$=\sqrt2|z$$+2-\sqrt3i|$ を満たしながら動く。
このとき、$|z|$の値の範囲と$z$の偏角$\theta$の範囲を求めよ。
ただし、$0 \leqq \theta \lt 2\pi$ とする。
この動画を見る 

【数C】【複素数平面】複素数と図形1 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形の各辺の中点が$\alpha=-1+i,\beta=1+2i,\gamma=2$であるとき、この三角形の3つの頂点を表す複素数を求めよ。
この動画を見る 
PAGE TOP