問題文全文(内容文):
次の極限を求めよ。ただし、$\theta$は定数とする。
(1) $ \displaystyle \lim_{ n \to \infty }\frac{1}{n} \cos \frac{n\pi}{4}$
(2) $ \displaystyle \lim_{ n \to \infty}\frac{\sin^2n\pi}{n^2+1}$
次の極限を求めよ。ただし、$\theta$は定数とする。
(1) $ \displaystyle \lim_{ n \to \infty }\frac{1}{n} \cos \frac{n\pi}{4}$
(2) $ \displaystyle \lim_{ n \to \infty}\frac{\sin^2n\pi}{n^2+1}$
単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の極限を求めよ。ただし、$\theta$は定数とする。
(1) $ \displaystyle \lim_{ n \to \infty }\frac{1}{n} \cos \frac{n\pi}{4}$
(2) $ \displaystyle \lim_{ n \to \infty}\frac{\sin^2n\pi}{n^2+1}$
次の極限を求めよ。ただし、$\theta$は定数とする。
(1) $ \displaystyle \lim_{ n \to \infty }\frac{1}{n} \cos \frac{n\pi}{4}$
(2) $ \displaystyle \lim_{ n \to \infty}\frac{\sin^2n\pi}{n^2+1}$
投稿日:2025.05.18





