【数Ⅲ】【関数と極限】数列の極限1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【関数と極限】数列の極限1 ※問題文は概要欄

問題文全文(内容文):
次の極限を求めよ。ただし、$\theta$は定数とする。
(1) $ \displaystyle \lim_{ n \to \infty }\frac{1}{n} \cos \frac{n\pi}{4}$
(2) $ \displaystyle \lim_{ n \to \infty}\frac{\sin^2n\pi}{n^2+1}$
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極限を求めよ。ただし、$\theta$は定数とする。
(1) $ \displaystyle \lim_{ n \to \infty }\frac{1}{n} \cos \frac{n\pi}{4}$
(2) $ \displaystyle \lim_{ n \to \infty}\frac{\sin^2n\pi}{n^2+1}$
投稿日:2025.05.18

<関連動画>

【高校数学】数Ⅲ-66 数列の極限②

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の極限を求めよ。

①$\displaystyle \lim_{n\to\infty}(-3n+8)$

②$\displaystyle \lim_{n\to\infty}(n-1)$

③$\displaystyle \lim_{n\to\infty}\left(5+\dfrac{2}{n}\right)$

④$\displaystyle \lim_{n\to\infty}(-3)^n$

⑤$\displaystyle \lim_{n\to\infty}\dfrac{n-3}{2n+1}$

⑥$\displaystyle \lim_{n\to\infty}(4n-3n^2)$
この動画を見る 

大学入試問題#109 大阪府立大学(2010) 無限級数

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#大阪府立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a_1=1$
$a_{n+1}=\displaystyle \frac{n}{n+5}\ a_n$のとき
$\displaystyle \sum_{n=1}^\infty\ a_n$を求めよ

出典:2010年大阪府立大学 入試問題
この動画を見る 

【数Ⅲ】【関数と極限】nは自然数とし、h>0のとき、不等式(1+h)^n≧1+nh+n(n-1)/2・h²が成り立つ。このことを用いて、数列{n/3^n}の極限を求めよ。

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
nは自然数とし、h>0のとき、
不等式$(1+h)^n≧1+nh+\dfrac{n(n-1)}{2}・h²$が成り立つ。
このことを用いて、数列$\dfrac{n}{3^n}$の極限を求めよ。
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試理系第1問(2)〜定積分と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(2)$\log$を自然対数とするとき、次の等式が成り立つ。
$\lim_{h \to 0}\int_{\frac{\pi}{3}}^{\frac{\pi}{3}+h}\log(|\sin t|^{\frac{1}{h}})dt=$
$\frac{1}{\boxed{ウ}}\log\frac{\boxed{エ}}{\boxed{オ}}$

2022明治大学全統理系過去問
この動画を見る 

【数Ⅲ】【関数と極限】数列の極限3 ※問題文は概要欄

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極限を求めよ。
(1) $ \displaystyle \lim_{ n \to \infty}\frac{1+2+3+\cdots\cdots+n}{n^2}$

(2) $ \displaystyle \lim_{ n \to \infty}\frac{4+7+10+\cdots\cdots+(3n+1)}{5+8+11+\cdots\cdots+(3n+2)}$

(3) $ \displaystyle \lim_{ n \to \infty}\frac{3+7+11+\cdots\cdots+(4n-1)}{3+5+7+\cdots\cdots+(2n+1)}$

(4) $ \displaystyle \lim_{ n \to \infty}(\frac{1+2+3+\cdots\cdots+n}{n+2}-\frac{n}{2})$
この動画を見る 
PAGE TOP