福田の入試問題解説〜慶應義塾大学2022年理工学部第1問(2)〜ガウス記号と倍数 - 質問解決D.B.(データベース)

福田の入試問題解説〜慶應義塾大学2022年理工学部第1問(2)〜ガウス記号と倍数

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (2)nを奇数とする。nと[\frac{3n+2}{2}]の積が6の倍数であるための必要十分条件は、\\
nを\boxed{\ \ エ\ \ }で割った時の余りが\boxed{\ \ オ\ \ }となるときである。ただし、\\
実数xに対しxを超えない最大の整数を[x]と表す。また、\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ }は0 \leqq \boxed{\ \ オ\ \ } \lt \boxed{\ \ エ\ \ }\\
を満たす整数である。\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ }を求める過程を解答欄に記述しなさい。
\end{eqnarray}

2022慶應義塾大学理工学部過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (2)nを奇数とする。nと[\frac{3n+2}{2}]の積が6の倍数であるための必要十分条件は、\\
nを\boxed{\ \ エ\ \ }で割った時の余りが\boxed{\ \ オ\ \ }となるときである。ただし、\\
実数xに対しxを超えない最大の整数を[x]と表す。また、\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ }は0 \leqq \boxed{\ \ オ\ \ } \lt \boxed{\ \ エ\ \ }\\
を満たす整数である。\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ }を求める過程を解答欄に記述しなさい。
\end{eqnarray}

2022慶應義塾大学理工学部過去問
投稿日:2022.06.08

<関連動画>

大学入試だけど、中学生も解ける!!(東京理科大)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
ある2桁の正の整数mを2乗すると下2桁が36になるとき、
m=?

東京理科大学
この動画を見る 

福井大 漸化式と整数問題の融合

アイキャッチ画像
単元: #数Ⅰ#整数の性質#約数・倍数・整数の割り算と余り・合同式#漸化式#数学(高校生)#福井大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2010福井大学過去問題
k,n自然数
$a_1=k$
$a_{n+1}=2a_n+1$
①$a_{n+4}-a_n$は15の倍数であることを示せ
②$a_{2010}$が15の倍数となる最小のk
この動画を見る 

ウィルソンの定理

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
pは素数

(p-1)!+1はpで割り切れることを示せ
この動画を見る 

下4桁!でも簡単

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 3^{164}$の下4桁を求めよ.
この動画を見る 

九州大学 素数 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2015九州大学過去問題
(1)nが正の偶数のとき、$2^n-1$は3の倍数であることを示せ。
(2)nを自然数とする。$2^n+1$と$2^n-1$は互いに素であることを示せ。
(3)p,qは異なる素数とする。$2^{P-1}-1 = pq^2$を満たすp,qをすべて求めよ。
この動画を見る 
PAGE TOP