福田の数学〜九州大学2023年理系第3問〜ベクトルと論証PART3 - 質問解決D.B.(データベース)

福田の数学〜九州大学2023年理系第3問〜ベクトルと論証PART3

問題文全文(内容文):
$\Large\boxed{3}$ 点Oを原点とする座標平面上の$\overrightarrow{0}$でない2つのベクトル
$\overrightarrow{m}$=($a$, $c$), $\overrightarrow{n}$=($b$, $d$)
に対して、D=ad-bc とおく。座標平面上のベクトル$\overrightarrow{q}$に対して、次の条件を考える。
条件Ⅰ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす実数r, sが存在する。
条件Ⅱ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす整数r, sが存在する。
以下の問いに答えよ。
(1)条件Ⅰがすべての$\overrightarrow{q}$に対して成り立つとする。D $\ne$ 0であることを示せ。
以下、D $\ne$ 0であるとする。
(2)座標平面上のベクトル$\overrightarrow{v}$, $\overrightarrow{w}$で
$\overrightarrow{m}・\overrightarrow{v}$=$\overrightarrow{n}・\overrightarrow{w}$=1, $\overrightarrow{m}・\overrightarrow{w}$=$\overrightarrow{n}・\overrightarrow{v}$=0
を満たすものを求めよ。
(3)さらにa, b, c, dが整数であるとし、x成分とy成分がともに整数であるすべてのベクトル$\overrightarrow{q}$に対して条件Ⅱが成り立つとする。Dのとりうる値をすべて求めよ。

2023九州大学理系過去問
単元: #数Ⅰ#大学入試過去問(数学)#数と式#平面上のベクトル#集合と命題(集合・命題と条件・背理法)#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 点Oを原点とする座標平面上の$\overrightarrow{0}$でない2つのベクトル
$\overrightarrow{m}$=($a$, $c$), $\overrightarrow{n}$=($b$, $d$)
に対して、D=ad-bc とおく。座標平面上のベクトル$\overrightarrow{q}$に対して、次の条件を考える。
条件Ⅰ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす実数r, sが存在する。
条件Ⅱ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす整数r, sが存在する。
以下の問いに答えよ。
(1)条件Ⅰがすべての$\overrightarrow{q}$に対して成り立つとする。D $\ne$ 0であることを示せ。
以下、D $\ne$ 0であるとする。
(2)座標平面上のベクトル$\overrightarrow{v}$, $\overrightarrow{w}$で
$\overrightarrow{m}・\overrightarrow{v}$=$\overrightarrow{n}・\overrightarrow{w}$=1, $\overrightarrow{m}・\overrightarrow{w}$=$\overrightarrow{n}・\overrightarrow{v}$=0
を満たすものを求めよ。
(3)さらにa, b, c, dが整数であるとし、x成分とy成分がともに整数であるすべてのベクトル$\overrightarrow{q}$に対して条件Ⅱが成り立つとする。Dのとりうる値をすべて求めよ。

2023九州大学理系過去問
投稿日:2023.06.11

<関連動画>

福田のわかった数学〜高校3年生理系082〜グラフを描こう(4)ルート混じりのグラフ

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$グラフを描こう(4)
$y=4x\sqrt x-3x^2+12x$のグラフを描け。ただし凹凸は調べなくてよい。
この動画を見る 

ドラゴン桜 東大模試数学

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a^3+b^3-3ab=2020$を満たす自然数$a,b$は存在するか.

東大模試過去問
この動画を見る 

17大阪府教員採用試験(数学:因数分解・整数問題)

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
(1)$x^2-6y^2+xy+5x+5y+6$を因数分解せよ。
(2)$x^2-6y^2+xy+5x+5y+9=0$をみたす整数の組(x,y)を求めよ。
この動画を見る 

【数Ⅰ】中高一貫校問題集3(数式・関数編)43:数と式:因数分解:次の式を因数分解せよ。6x²+5xy-6y²+x-5y-1

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材: #TK数学#TK数学問題集3(数式・関数編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を因数分解せよ。
6x²+5xy-6y²+x-5y-1
この動画を見る 

2次関数 グラフと2次不等式4【ホーン・フィールドがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次関数$y=x^2+mx+2$が次の条件を満たすように、定数$m$の値の範囲を定めよ。
(1)この2次関数のグラフと$x$軸の正の部分が異なる2点で交わる。
(2)この2次関数のグラフと$x$軸の$x\lt -1$の部分が異なる2点で交わる。

放物線$y=x^2+2(m-1)x+5-m^2$が$x$軸の正の部分と負の部分のそれぞれと交わるように、定数$m$の値の範囲を定めよ。

2次方程式$x^2+2mx+2m+3=0$が次のような実数解をもつように、定数$m$の値の範囲を定めよ。
(1)異なる2つの負の解
(2)-4より大きい異なる2つの解
この動画を見る 
PAGE TOP