問題文全文(内容文):
①円$x^2+y^2=36$を$x$軸を基準にして$y$軸方向に
$\dfrac{2}{3}$倍して得られる図形の方程式を求めよ.
②長さ8の線分$PQ$がある.
点$P$が$x$軸上,点$Q$が$y$軸上を動くとき,
$PQ$を$3:5$に内分する点$R$の軌跡を求めよ.
①円$x^2+y^2=36$を$x$軸を基準にして$y$軸方向に
$\dfrac{2}{3}$倍して得られる図形の方程式を求めよ.
②長さ8の線分$PQ$がある.
点$P$が$x$軸上,点$Q$が$y$軸上を動くとき,
$PQ$を$3:5$に内分する点$R$の軌跡を求めよ.
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①円$x^2+y^2=36$を$x$軸を基準にして$y$軸方向に
$\dfrac{2}{3}$倍して得られる図形の方程式を求めよ.
②長さ8の線分$PQ$がある.
点$P$が$x$軸上,点$Q$が$y$軸上を動くとき,
$PQ$を$3:5$に内分する点$R$の軌跡を求めよ.
①円$x^2+y^2=36$を$x$軸を基準にして$y$軸方向に
$\dfrac{2}{3}$倍して得られる図形の方程式を求めよ.
②長さ8の線分$PQ$がある.
点$P$が$x$軸上,点$Q$が$y$軸上を動くとき,
$PQ$を$3:5$に内分する点$R$の軌跡を求めよ.
投稿日:2017.04.29





