福田のわかった数学〜高校2年生041〜軌跡(8)媒介変数表示の軌跡(1) - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生041〜軌跡(8)媒介変数表示の軌跡(1)

問題文全文(内容文):
数学$\textrm{II}$ 軌跡(8) 媒介変数表示(1)
$\left\{\begin{array}{1}
x=2\cos\theta+\sin\theta\\
y=\cos\theta-2\sin\theta
\end{array}\right.  
(0 \leqq \theta \leqq \pi)$
を満たす$(x,y)$の軌跡を図示せよ。
また、$0 \leqq \theta \leqq \frac{3}{2}\pi$のときはどうか。
単元: #数Ⅱ#平面上の曲線#図形と方程式#軌跡と領域#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 軌跡(8) 媒介変数表示(1)
$\left\{\begin{array}{1}
x=2\cos\theta+\sin\theta\\
y=\cos\theta-2\sin\theta
\end{array}\right.  
(0 \leqq \theta \leqq \pi)$
を満たす$(x,y)$の軌跡を図示せよ。
また、$0 \leqq \theta \leqq \frac{3}{2}\pi$のときはどうか。
投稿日:2021.07.25

<関連動画>

福田の1.5倍速演習〜合格する重要問題004〜東北大学2015年理系数学第1問

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#2次曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#東北大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
xy平面において、次の式が表す曲線をCとする。
$x^2+4y^2=1,x \gt 0, y \gt 0$
PをC上の点とする。PでCに接する直線をlとし、Pを通りlと垂直な直線を
mとして、x軸とy軸とmで囲まれてできる三角形の面積をSとする。PがC
上の点全体をうごくとき、Sの最大値とその時のPの座標を求めよ。

2015東北大学理系過去問
この動画を見る 

福田の数学〜上智大学2021年TEAP利用理系第4問〜楕円と弦の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$Oを原点とする座標平面において、楕円$D:\frac{x^2}{6}+\frac{y^2}{2}=1$ 上に異なる2点$P_1,P_2$
がある。$P_1$における接線$l_1$と$P_2$における接線$l_2$の交点を$Q(a,\ b)$とし、線分$P_1P_2$の
中点をRとする。

(1)$P_1$の座標を$(x_1,\ y_1)$とするとき、$l_1$の方程式は$x_1x+\boxed{\ \ チ\ \ }\ y_1y+\boxed{\ \ ツ\ \ }=0$
と表される。

(2)直線$P_1P_2$の方程式は、a,bを用いて$ax+\boxed{\ \ テ\ \ }\ by+\boxed{\ \ ト\ \ }=0$と表される。

(3)3点O,R,Qは一直線上にあって$\overrightarrow{ OR }=\frac{\boxed{\ \ ナ\ \ }}{a^2+\boxed{\ \ ニ\ \ }\ b^2}\overrightarrow{ OQ }$が成り立つ。

(4)$l_1$と$l_2$のどちらもy軸と平行ではないとする。このとき、$l_1$と$l_2$の傾きは
tの方程式$(a^2+\boxed{\ \ ヌ\ \ })t^2+\boxed{\ \ ネ\ \ }abt+(b^2+\boxed{\ \ ノ\ \ })=0$ の解である。

(5)$l_1$と$l_2$が直交しながら$P_1,P_2$が動くとする。
$(\textrm{i})Q$の軌跡の方程式を求めよ。   $(\textrm{ii})R$のy座標の最大値を求めよ。
$(\textrm{iii})R$の軌跡の概形を描け。

2021上智大学理系過去問
この動画を見る 

【数C】【平面上の曲線】次の極方程式はどのような曲線を表すか。直交座標の方程式に直して答えよ。(1)r=1/√2+cosθ(2)r=3/1+2cosθ(3)r=2/1+cosθ

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極方程式はどのような曲線を表すか。
直交座標の方程式に直して答えよ。
(1)$r=\dfrac{1}{\sqrt{2}+cosθ}$
(2)$r=\dfrac{3}{1+2cosθ}$
(3)$r=\dfrac{2}{1+cosθ}$
この動画を見る 

福田のおもしろ数学152〜2つの図形の面積を同時に2等分する直線が存在する証明

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数C
指導講師: 福田次郎
問題文全文(内容文):
次の2つの図形(※動画参照)の面積を同時に2等分する直線が存在することを証明せよ。
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試Ⅲ第4問〜極方程式と曲線で囲まれた面積

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#媒介変数表示と極座標#数学(高校生)#大学入試解答速報#数学#明治大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$座標平面の原点Oを極、x軸の正の部分を始線とする極座標$(r,\ \theta)$を考える。
$k \gt 0$として、極方程式
$r(\sqrt{\cos\theta}+\sqrt{\sin\theta})^2=k  (0 \leqq \theta \leqq \frac{\pi}{2})$
で表される曲線を$C(k)$とする。曲線$C(k)$上の点を直交座標$(x,\ y)$で表せばxの
とりうる値の範囲は、$\boxed{\ \ ア\ \ } \leqq x \leqq \boxed{\ \ イ\ \ }$である。
曲線$C(k)$とx軸、y軸で囲まれた図形の面積を$S(k)$とおけば、$S(k)=\boxed{\ \ ウ\ \ }$
でなる。直交座標が$(\frac{k}{4},\ \frac{k}{4})$である曲線$C(k)$上の点Aにおける曲線$C(k)$の接線l
の方程式は、$y=\boxed{\ \ エ\ \ }$となる。曲線$C(k)$と直線l、およびx軸で囲まれた
図形の面積を$T(k)$とおけば、$S(k)=\boxed{\ \ オ\ \ }\ T(k)$が成り立つ。$0 \lt m \lt n$を
満たす実数$m,n$に対して、$S(n)-S(m)$が$T(n)$と等しくなるのは、

$\frac{m^2}{n^2}=\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ \ \ }}$のときである。

$\boxed{\ \ イ\ \ }\ 、\boxed{\ \ ウ\ \ }$の解答群

$⓪\sqrt k  ①k  ②k^2  ③\frac{\sqrt 2}{2}  ④\frac{\sqrt 2}{3}$
$⑤\frac{k}{2}  ⑥\frac{k}{3}  ⑦\frac{k^2}{4}  ⑧\frac{k^2}{5}  ⑨\frac{k^2}{6}$

$\boxed{\ \ エ\ \ }$の解答群

$⓪x+\frac{k}{2}  ①x+\frac{k}{4}  ②-x+\frac{k}{2}  ③-x+\frac{k}{4}  ④2x-\frac{k}{2}$
$⑤2x-\frac{k}{4}  ⑥2x-\frac{3k}{4}  ⑦-2x+\frac{k}{2}  ⑧-2x+\frac{k}{4}  ⑨-2x+\frac{3k}{4}$

2021明治大学全統過去問
この動画を見る 
PAGE TOP