福田のわかった数学〜高校2年生041〜軌跡(8)媒介変数表示の軌跡(1) - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生041〜軌跡(8)媒介変数表示の軌跡(1)

問題文全文(内容文):
数学$\textrm{II}$ 軌跡(8) 媒介変数表示(1)
$\left\{\begin{array}{1}
x=2\cos\theta+\sin\theta\\
y=\cos\theta-2\sin\theta
\end{array}\right.  
(0 \leqq \theta \leqq \pi)$
を満たす$(x,y)$の軌跡を図示せよ。
また、$0 \leqq \theta \leqq \frac{3}{2}\pi$のときはどうか。
単元: #数Ⅱ#平面上の曲線#図形と方程式#軌跡と領域#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 軌跡(8) 媒介変数表示(1)
$\left\{\begin{array}{1}
x=2\cos\theta+\sin\theta\\
y=\cos\theta-2\sin\theta
\end{array}\right.  
(0 \leqq \theta \leqq \pi)$
を満たす$(x,y)$の軌跡を図示せよ。
また、$0 \leqq \theta \leqq \frac{3}{2}\pi$のときはどうか。
投稿日:2021.07.25

<関連動画>

福田のわかった数学〜高校2年生042〜軌跡(9)媒介変数表示の軌跡(2)

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#図形と方程式#軌跡と領域#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 軌跡(9) 媒介変数表示(2)
tが実数値をとって変化するとき、
$x=\frac{t^2-1}{t^2+1} y=\frac{2t}{t^2+1}$
はどんな曲線を表すか。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題026〜神戸大学2016年度理系数学第5問〜極方程式と媒介変数表示

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#平面上の曲線#剰余の定理・因数定理・組み立て除法と高次方程式#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
極方程式で表されたxy平面上の曲線$r=1+\cos\theta(0 \leqq \theta \leqq 2\pi)$をCとする。
(1)曲線C上の点を直交座標(x,y)で表したとき、$\frac{dx}{d\theta}=0$となる点、および
$\frac{dy}{d\theta}=0$となる点の直交座標を求めよ。
(2)$\lim_{\theta \to \pi}\frac{dy}{dx}$を求めよ。
(3)曲線Cの概形をxy平面上にかけ。
(4)曲線Cの長さを求めよ。

2016神戸大学理系過去問
この動画を見る 

【数C】【平面上の曲線】次の極方程式はどのような曲線を表すか。直交座標の方程式に直して答えよ。(1)r=1/√2+cosθ(2)r=3/1+2cosθ(3)r=2/1+cosθ

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極方程式はどのような曲線を表すか。
直交座標の方程式に直して答えよ。
(1)$r=\dfrac{1}{\sqrt{2}+cosθ}$
(2)$r=\dfrac{3}{1+2cosθ}$
(3)$r=\dfrac{2}{1+cosθ}$
この動画を見る 

高専数学 微積I #243(2) 媒介変数表示関数のx軸回転体

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$0 \leqq t \leqq 1$である.
曲線$x=t^2,y=e^t$
$x$軸,$y$軸,直線$x=1$で囲まれた図形を
$x$軸を中心とした回転体の体積$V$を求めよ.
この動画を見る 

高専数学 微積I #248(2) 極座標表示曲線の長さ

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$0\leqq \theta \leqq 4\pi$である.
極座標による曲線$r=\sin^4\dfrac{\theta}{4}$
の長さを求めよ.
この動画を見る 
PAGE TOP