整数問題 須磨学園(改) 2022年入試問題100問解説の53問目 - 質問解決D.B.(データベース)

整数問題 須磨学園(改) 2022年入試問題100問解説の53問目

問題文全文(内容文):
$x^2+6xy+10y^2+6y=9$を満たす整数の組(x,y)をすべて求めよ。

2022須磨学園高等学校
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^2+6xy+10y^2+6y=9$を満たす整数の組(x,y)をすべて求めよ。

2022須磨学園高等学校
投稿日:2022.02.13

<関連動画>

絶対値 中1も解ける!! 海星高校

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
ある整数xの絶対値が4より小さいという。
xは全部でいくつの整数が考えられるか。

海星高校
この動画を見る 

整数問題(フェルマーの小定理)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3^n+5^n-1$が$7$の倍数となる自然数$n$の条件を求めよ.
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n^2+2n-1$と$n^5-5$がともに7の倍数となる$n$のうち3桁で最小のものを求めよ.
この動画を見る 

九州大学 素数 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2015九州大学過去問題
(1)nが正の偶数のとき、$2^n-1$は3の倍数であることを示せ。
(2)nを自然数とする。$2^n+1$と$2^n-1$は互いに素であることを示せ。
(3)p,qは異なる素数とする。$2^{P-1}-1 = pq^2$を満たすp,qをすべて求めよ。
この動画を見る 

2023高校入試解説29問目 整数問題その1 早稲田本庄

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$h(m,n) = \frac{1}{2}(m+n)(m+n-1)-m+1$と定める。(m,nは正の整数)
$h(3m,3m+4) = 1987$を満たすmをすべて求めよ。

2023早稲田大学 本庄高等学院
この動画を見る 
PAGE TOP