【高校数学】順列の例題~苦手な人はこれだけ完璧に~ 1-6.5【数学A】 - 質問解決D.B.(データベース)

【高校数学】順列の例題~苦手な人はこれだけ完璧に~ 1-6.5【数学A】

問題文全文(内容文):
(1)4個の記号○、△、□、×を1列に並べる方法は何通りあるか。

(2)7個の数字0,1,2,3,4,5,6から異なる5個を使って、5桁の整数を作るとき、
  次のような整数は何個できるか
  (a)整数
  (b)奇数
  (c)5の倍数
  (d)54000より大きい整数

(3)男子3人,女子2人が1列に並ぶとき、女子2人が隣り合うような並び方は、
 何通りあるか。
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)4個の記号○、△、□、×を1列に並べる方法は何通りあるか。

(2)7個の数字0,1,2,3,4,5,6から異なる5個を使って、5桁の整数を作るとき、
  次のような整数は何個できるか
  (a)整数
  (b)奇数
  (c)5の倍数
  (d)54000より大きい整数

(3)男子3人,女子2人が1列に並ぶとき、女子2人が隣り合うような並び方は、
 何通りあるか。
投稿日:2020.05.15

<関連動画>

福田の数学〜慶應義塾大学2023年薬学部第1問(5)〜確率漸化式の基本

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (5)地点Aと地点Bがあり、Kさんは時刻0に地点Aにいる。Kさんは1秒ごとに以下の確率で移動し、時刻0からn秒後に地点Aか地点Bにいる。
$\left\{\begin{array}{1}
・地点Aにいるとき\\
\frac{1}{2}の確率で地点Aにとどまり、\frac{1}{2}の確率で地点Bに移動する。\\
・地点Bにいるとき
\frac{1}{6}の確率で地点Bにとどまり、\frac{5}{6}の確率で地点Aに移動する。\\
\end{array}\right.$
Kさんが時刻0からn秒後に地点Aにいる確率を$a_n$、地点Bにいる確率を$b_n$で表す。ただし、nは0以上の整数とする。
(i)$a_{n+1}$を$a_n$と$b_n$で表すと$a_{n+1}$=$\boxed{\ \ サ\ \ }$$a_n$+$\boxed{\ \ シ\ \ }$$b_n$であり、$a_4$=$\boxed{\ \ ス\ \ }$
(ii)数列{$a_n$}の一般項$a_n$をnの式で表すと$\boxed{\ \ セ\ \ }$である。

2023慶應義塾大学薬学部過去問
この動画を見る 

【高校数学】  数A-16  組合せ③ ・ 男女編

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎男子6人、女子4人の中から4人メンバーを選ぶとき、次のような選び方は、それぞれ何通り?

①すべての選び方
②男子3人、女子1人を選ぶ
③女子が少なくとも1人選ばれる
④特定のa,bがともに選ばれる
この動画を見る 

福田の数学〜立教大学2025経済学部第1問(2)〜順列と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2)赤玉$3$個と白玉$4$個を無作為に$1$列に

並べるとき、

白玉が両端にある確率は$\boxed{イ}$である。

$2025$年立教大学経済学部過去問題
この動画を見る 

福田の数学〜東京慈恵会医科大学2024医学部第1問〜条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{ 1 }$1から3までの番号をつけた赤玉3個と、1から3までの番号をつけた白玉3個が入った袋から、玉を1個ずつ3回取り出し、玉に書かれた番号を取り出した順に$a_1,a_2,a_3$とする。ただし、取り出した玉はもとに戻さないものとする。
取り出した3個の玉が、赤玉2個、白玉1個であったとき、
$a_1 \lt a_2 \lt a_3$となる条件付き確率は$\boxed{ア}$、
$a_1 \lt a_2$かつ$a_2 \gt a_3$となる条件付き確率は$\boxed{イ}$
である。
この動画を見る 

福田の数学〜早稲田大学2024商学部第2問〜正24角形の頂点を結んでできる四角形の面積と確率

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#三角関数#加法定理とその応用#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標平面において、単位円上の24個の点を${\textrm P}_n(\cos\dfrac{n}{12}\pi,\sin\dfrac{n}{12}\pi)~(n=1,2,3,\cdots,24)$とする。1から24までの番号を付けた24枚のカードから4枚取り出す。取り出したカードの番号を$a,b,c,d$とするとき、点${\textrm P}_a,{\textrm P}_b,{\textrm P}_c,{\textrm P}_d$を頂点とする四角形を$R$とする。四角形$R$の面積の取りうる値を大きい順に$S_1,S_2,S_3$とする。
(1)$S_2$を求めよ。
(2)四角形$R$の面積が$S_3$になる確率を求めよ。
この動画を見る 
PAGE TOP