整数問題 桃山学院 - 質問解決D.B.(データベース)

整数問題 桃山学院

問題文全文(内容文):
m,nは自然数
$4m^2+n^2 = 200 $を満たすmnの値を全て求めよ。

桃山学院高等学校
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
m,nは自然数
$4m^2+n^2 = 200 $を満たすmnの値を全て求めよ。

桃山学院高等学校
投稿日:2023.03.30

<関連動画>

【数学A】合同式(mod)の総まとめ【誰でも17分でマスター】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学A】合同式(mod)の総まとめ動画です
-----------------
$x+5 \equiv (mod7)$を$x \equiv a(mod m)$の形で示せ。

$5x \equiv 3(mod4)$を$x \equiv a(mod m)(a \lt m)$の形で示せ。
この動画を見る 

一工夫必要な不定方程式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数(a,b)の組は何組あるか?

$3ab+4a-b=684$
この動画を見る 

津田塾大 基本対称式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c$は自然数である.
$abc,ab+bc+ca$,$a+b+c$がすべて3の倍数なら,$a,b,c$はすべて3の倍数であることを示せ.

2016津田塾大過去問
この動画を見る 

Entrance exam for Kyoto University.find all $(p,q)$ that meets $p^q+q^p=$prime number.p,q are prime .

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p^q+q^p=$素数を満たすすべての$(p,q)$を見つけてください。($p,q$は素数)

出典:京都大学 入試問題
この動画を見る 

2023東工大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x^3-x)^2(y^3-y)=86400$
整数$x,y$を求めよ.

2023東工大過去問
この動画を見る 
PAGE TOP