【数ⅢC】複素数平面の基本③複素数平面の極形式の裏ワザ - 質問解決D.B.(データベース)

【数ⅢC】複素数平面の基本③複素数平面の極形式の裏ワザ

問題文全文(内容文):
次の複素数を極形式で表せ
(1)$\sqrt3+i$ (2)$-2+2i$
チャプター:

0:00 オープニング
0:04 極形式の考え方
2:26 極形式の裏ワザ
4:24 エンディング

単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の複素数を極形式で表せ
(1)$\sqrt3+i$ (2)$-2+2i$
投稿日:2023.03.03

<関連動画>

藤田医科大 ドモアブルの定理

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#数学(高校生)#藤田医科大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(1+i)^n=(1-i)n$をみたす2023以下の自然数nの個数を答えよ.

2023藤田医科大過去問
この動画を見る 

2023九州大学 4次方程式と複素平面上の三角形

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$x^4-2x^3+3x^2-2x+1=0$を解け.
(2)複素数平面上の$\triangle ABC$の頂点を表す複素数を$\alpha,\beta,\delta$とする.
$(\alpha-\beta)^4+(\beta-\delta)+(\delta-\alpha)^4=0$が成り立つとき,$\triangle ABC$はどのような三角形か.

2023九州大過去問
この動画を見る 

福田の一夜漬け数学〜数学III 複素数平面〜点の軌跡(2)

アイキャッチ画像
単元: #数Ⅱ#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 点$z$が原点中心、半径1の円周上を動くとき、次の条件を満たす
点$w$はどのような図形を描くか。
(1)$w=2iz+1$
(2)$w=\displaystyle \frac{3z-2i}{z-2}$

${\Large\boxed{2}}$ $\displaystyle \frac{z}{z^2+1}$が実数となるように$z$が動くとき、
点$z$はどのような図形を描くか。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題040〜上智大学2019年度TEAP理系第2問〜複素数平面上で正三角形となる条件

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数平面において、円周$|z|=1$上の異なる3点$z_1,z_2,z_3$を考える。
このとき、次の条件pとqは同値であることを示せ。
$p:z_1,z_2,z_3$を頂点とする三角形が正三角形である。
$q:z_1+z_2+z_3=0$

2019上智大過去問
この動画を見る 

複素数平面の基本①複素数平面の基本的な考え方

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数平面の基本的な考え方
この動画を見る 
PAGE TOP